文件名称:
一种基于SVM的准确分类方法用于高光谱图像分类
开发工具:
文件大小: 1006kb
下载次数: 0
上传时间: 2021-03-10
详细说明:分类过程是分析高光谱图像数据的重要任务之一。 支持向量机(SVM)是最流行和使用最广泛的分类器,其性能正在不断提高。 近来,与仅考虑像素的光谱特征的方法相比,利用空间和光谱信息的方法更加充分,鲁棒,有用和准确。 在本文中,通过使用空间像素关联(SPA)处理从高光谱数据中提取区域纹理信息,以进一步提高SVM技术的分类性能。 为了提高分类的准确性,提出了一种利用SPA特征的支持向量机的新方法。 此外,该手稿中还提出了一种可用于解决像素不正确问题的新方法,即“增长类的控制过程”(CPoGC)。 为了证明所提方案的有效性,我们进行了印度松站点(IPS)上的AVIRIS高光谱数据实验,以将所提出的分类方法与一些现有的基于SVM的技术(例如SC-SVM和PSO-SVM)进行比较,以及一些传统的方法,例如K-NN和K-means。 实验结果表明,所提出的方法明显优于这些众所周知的分类算法。
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.