开发工具:
文件大小: 1mb
下载次数: 0
上传时间: 2021-03-08
详细说明:我们提出了一个简单的正则化方案来处理生成对抗网络(GAN)中的模式缺失和训练不稳定的问题。 关键思想是利用鉴别器学习到的视觉特征。 我们通过向生成器提供由鉴别器提取的真实数据特征来重建真实数据。 将重建损失添加到GAN的目标函数中,以强制生成器可以根据鉴别器的特征进行重建,这有助于明确指导生成器朝着接近实际数据的可能配置进行。 所提出的重建损失提高了GAN的性能,在不同的数据集上产生了更高质量的图像,并且可以轻松地与其他正则化损失函数(例如梯度罚分)组合以提高各种GAN的性能。 我们对不同数据集上广泛采用的DCGAN体系结构和复杂的ResNet体系结构进行了实验,结果表明了该方法的有效性和鲁棒性。
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.