开发工具:
文件大小: 918kb
下载次数: 0
上传时间: 2021-03-07
详细说明:不确定性度量是机器学习领域中的关键评估工具,它可以度量两个特征子集之间的依赖性和相似性,并可以用来判断特征在分类和聚类算法中的重要性。 在经典的粗糙集中,存在一些不确定性工具来测量特征子集,包括准确性,粗糙度,信息熵,粗糙熵等。这些度量适用于离散值信息系统,但不适用于实值数据集。 在本文中,通过介绍邻域粗糙集模型,每个对象都与一个邻域子集(称为邻域颗粒)相关联。 提出了几种邻域颗粒的不确定性度量,即邻域系统中的邻域精度,信息量,邻域熵和信息粒度。 此外,我们证明了这些不确定性度量满足非负性,不变性和单调性。 还给出了这些措施的最大值和最小值。 理论分析和实验结果表明,在邻域系统中,信息量,邻域熵和信息粒度度量优于邻域精度度量。
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.