文件名称:
如何在MLlib中实现随机森林和梯度提升树(GBTs)?
开发工具:
文件大小: 427kb
下载次数: 0
上传时间: 2021-03-03
详细说明:Spark1.2在MLlib中引入了随机森林和梯度提升树(GBTs).这两种机器学习方法适用于分类和回归,且是在机器学习算法中应用得最多和最成功的算法。随机森林和GBTs都是集成学习算法,它们通过集成多棵决策树来实现强分类器。这篇博文中,我们会阐述这些模型及其他们在MLlib中的分布式实现。我们也给出一些简单例子和要点以便你知道如何上手。简单来说,集成学习方法就是基于其他的机器学习算法,并把它们有效的组合起来的一种机器学习算法。组合产生的算法相比其中任何一种算法模型更强大、准确。在MLlib1.2中,我们使用决策树作为基础模型。我们提供两种集成算法:随机森林和梯度提升树(GBTs)。两者之间主
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.