开发工具:
文件大小: 805kb
下载次数: 0
上传时间: 2021-03-03
详细说明:通过去除不相关和多余的特征,特征选择旨在找到具有良好泛化能力的原始特征的紧凑表示。 随着无标签数据的普及,无监督特征选择已显示出可有效减轻维数的诅咒,对于全面分析和理解无标签高维数据的无数至关重要,这是由于子空间聚类中低秩表示法的成功所致,我们提出了一种用于无监督特征选择的正则化自我表示(RSR)模型,其中每个特征都可以表示为其相关特征的线性组合。 通过使用L-2,L-1-范数来表征表示系数矩阵和表示残差矩阵,RSR有效地选择了代表性特征并确保了对异常值的鲁棒性。 如果某个特征很重要,则它将参与大多数其他特征的表示,从而导致出现大量的表示系数,反之亦然。 对合成数据和现实世界数据进行的实验分析表明,该方法可以有效地识别代表性特征,在聚类精度,冗余减少和分类精度方面优于许多最新的无监督特征选择方法。
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.