文件名称:
加利福尼亚住房数据集:将机器学习建模应用于加利福尼亚住房数据集-源码
开发工具:
文件大小: 33mb
下载次数: 0
上传时间: 2021-03-02
详细说明:加州住房数据集
开发了机器学习模型来预测加利福尼亚住房数据集的中位数房屋价值特征。 使用了三种算法:线性回归,XGBoost和TensorFlow / Keras神经网络。
在模型训练之前进行了要素工程,包括Z分数归一化,对数缩放,要素添加(总卧室与总房间的比率),要素修剪和要素合并以及经度和纬度的交叉。
对于所有这三种算法,均使用工程特征的不同组合绘制R平方图,以观察有效性。 然后,根据算法以图形方式编辑这些图,以便于比较。
下面提供了每种算法的图例,这些图例将数值链接到一组工程特征。 该存储库中提供的机器学习脚本与图例重合,例如,XGBoost的“ 1:无特征工程”与XGBoost文件夹中的“ californiaHousingXGBoost1.py”重合。
R平方图位于每个父算法文件夹内的各个“图”文件夹中。 其中提供了单独的.svg图形,用于以下图例中列出的功能工程集的所有
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.