开发工具:
文件大小: 264kb
下载次数: 0
上传时间: 2021-03-01
详细说明:传统的特征选择方法基本上是以精度为优化目标,没有充分考虑数据样本类别分布倾斜性,在数据分布不平衡的数据集上性能表现不理想。在不平衡数据集上通过有放回的抽样方法独立地从数据集大类样本集中随机抽取多个样本子集,使每次随机抽取的样本数量与小类样本数量一致,然后将各抽取的样本子集分别与小类样本集组合成多个新的训练样本集。对多个新样本集的特征子集以集成学习的方式采用投票机制进行投票,数据集的最终特征子集以得票数目超过半数的特征共同组合而成。在UCI不平衡数据集上的实验结果显示,提出的方法表现出了较好的性能,是一种能够处理不平衡问题的有效特征选择方法。
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.