您好,欢迎光临本网站![请登录][注册会员]  
文件名称: 使用Python编写机器学习入门教程
  所属分类: 其它
  开发工具:
  文件大小: 587kb
  下载次数: 0
  上传时间: 2021-02-25
  提 供 者: weixin_********
 详细说明:1.当输入变量和我们尝试去预测的输出变量之间是线性相关时,或者当解释模型的能力很重要时(例如,隔离任何一个输入变量对于预测的影响),逻辑回归对于二进制分类是比较合适的选择。2.决策树和随机森林是非线性模型,可以被用来很好地计算更复杂的关系,但是它不太适用于处理人类行为理解。3.适当地评估模型性能很重要,验证你的模型在之前未见过的数据上表现是否良好。4.产品化一个机器学习模型牵涉许多考虑因素,不同于模型开发过程中的那些考虑因素:例如,如何同步地计算模型输入?每次得分时你需要记录什么信息?你如何确定生产环境下模型的性能?机器学习是我们日常接触到的许多产品的长期发展动力,从类似于Apple的Siri
(系统自动生成,下载前可以参看下载内容)

下载文件列表

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度
  • 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.
 输入关键字,在本站1000多万海量源码库中尽情搜索: