文件名称:
集成学习总结&Stacking方法详解
开发工具:
文件大小: 153kb
下载次数: 0
上传时间: 2021-02-24
详细说明:本文来自于csdn,文章主要介绍了集成学习的几种方法和其相应的应用等相关内容。集成学习主要分为bagging,boosting和stacking方法。本文主要是介绍stacking方法及其应用。但是在总结之前还是先回顾一下继承学习。这部分主要转自网络。给定一个大小为n的训练集D,Bagging算法从中均匀、有放回地选出m个大小为n'的子集Di,作为新的训练集。在这m个训练集上使用分类、回归等算法,则可得到m个模型,再通过取平均值、取多数票等方法综合产生预测结果,即可得到Bagging的结果。加入的过程中,通常根据它们的上一轮的分类准确率给予不同的权重。加和弱学习者之后,数据通常会被重新加权,来
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.