文件名称:
基于卷积特征和贝叶斯决策的双波段场景分类
开发工具:
文件大小: 6mb
下载次数: 0
上传时间: 2021-02-23
详细说明:针对可见光和近红外双波段场景分类存在图像标注样本少和特征融合质量低的问题,提出了一种基于卷积神经网络(CNN)特征提取和朴素贝叶斯决策融合的双波段场景分类方法。首先,将基于预训练的CNN模型作为双波段图像的特征提取器,避免标注样本少导致的过拟合问题;然后,通过主成分分析降维和特征归一化方法,提高支持向量机的计算速度和每个波段的分类性能;最后,以双波段后验概率为朴素贝叶斯先验概率,构建了决策融合模型,实现场景融合分类。在公开数据集上的实验结果表明,相比单一波段分类和双波段特征级联融合分类方法,本方法的识别率有明显提升,可达到94.3%;比基于传统特征的最优方法高6.4个百分点,与基于CNN的方法
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.