开发工具:
文件大小: 1mb
下载次数: 0
上传时间: 2021-02-21
详细说明:建立一种离群样本划分的半监督模糊学习算法模型.首先,提出一种基于Hopfield参数估计的松弛条件模糊鉴别分析算法,重新定义每一个样本的隶属度,并在特征抽取的过程中,根据隶属度对散布矩阵的定义所做的贡献获得每个样本相应的类别信息,由此获得普通样本分类信息.其次,根据样本隶属度的分布信息划分出离群样本空间,将普通样本分类结果作为离群样本聚类的先验类属信息,并对该空间样本提出一种新的半监督模糊学习策略进行动态聚类.该算法同时具备了监督学习和无监督学习方法的优势,克服了传统聚类缺乏类过程知识的缺点,可以有效地解决特征空间中特殊样本的分类问题.性能分析表明,该方法优于单一的特征抽取方法,在NUST60
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.