文件名称:
INI流水线学习:将Isomap,LLE和扩散图算法应用于几个数据集,包括经典瑞士卷数据,虹膜数据集,MNIST,神经元尖峰数据和分子动力学模拟数据-源码
开发工具:
文件大小: 13mb
下载次数: 0
上传时间: 2021-02-18
详细说明:EN.553.738高维近似,概率和统计学习最终项目
关查理,胡志明,张杰约翰·霍普金斯大学
在这个项目中,我们探索三种不同的非线性降维/流形学习算法:Isomap,局部线性嵌入(LLE)和扩散图/ Laplacian特征图。 我们在数据集上对这些算法进行基准测试,例如经典的瑞士卷,虹膜,MNIST和神经元尖峰数据。 我们还将它们与主成分分析(PCA)进行比较,后者是一种线性降维算法。 最后,我们有一个使用扩散图的演示来分析氢二聚体的玩具分子动力学模拟的自由能态。
要运行任何基准测试/演示,请启动相应的脚本: python filename.py 。 您可以编辑每个脚本中每个算法中的超参数,例如投影维和相邻算法的数量。
先决条件
脚本要求:
数据集
Swiss Roll和Iris数据集是从sklearn.datasets包生成的。
我们下载了亚·莱卡的网页的数据库MNIST。
神经
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.