开发工具:
文件大小: 763kb
下载次数: 0
上传时间: 2021-02-07
详细说明:随着微博用户数量的上升,微博信息量成倍增长,基于冗杂的微博信息向微博用户快速推荐感兴趣的好友是不容 回避的技术问题。针对这一问题,基于微博大数据,以Hadoop 为平台,HBase为基础,MapReduce为编程框架,提出了基于Apriori算法与 Item-based协同过滤算法的组合算法,并构建了推荐好友系统。该系统通过Apriori算法对冗杂的微博内容 记录进行频繁项集的计算,得出能表达用户喜好的标签,以提升系统的时间性能;通过Item-based算法对标签进行匹配推 荐,以缩短系统的推荐时间以及资源占用率。为了验证所构建系统的有效性和可靠性,分别进行了两组对比实验,第一组 实验为添加了Apriori算法的协同过滤算法与传统协同过滤算法在时间性能方面的对比测试,第二组实验则为Apriori算法 混合Item-based协同过滤算法与混合K-means 算法的对比测试。实验结果表明,在庞大的微博容量下,与传统协同过滤 算法相比,所提出算法的运行时间缩短了24%~44%;与混合 K-means 聚类算法相比,所提出算法在算法运行时间和CPU占用率均有1.2~1.5倍的提升。可见,提出
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.