文件名称:
HAR堆叠式残余比拟LSTM:使用带有TensorFlow的深度堆叠式残余双向LSTM细胞(RNN),我们进行人类活动识别(HAR)。 在2个不同的数据集中的6个类别或18个类别中对移动类型进行分类-源码
开发工具:
文件大小: 458kb
下载次数: 0
上传时间: 2021-02-06
详细说明:HAR堆叠残留投标书LSTM
该项目基于,以教程形式提供。 它由使用TensorFlow的堆叠式残余双向LSTM细胞(RNN)组成的人类活动识别(HAR)组成。
它类似于“ ”中使用的体系结构,而没有注意力机制,而只有编码器部分。 实际上,我们在开始考虑将残余连接应用于LSTM时就开始进行编码-直到后来,我们才发现这种深层LSTM体系结构已经被使用。
在这里,我们将先前使用的数据集的准确性从91%提高到94%,并通过在另一个数据集上尝试我们的体系结构进一步推动了这一主题。
我们的神经网络经过编码,易于适应新的数据集(假设为每个预测提供了固定的,非动态的信号窗口),并通过使用新的配置文件
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.