文件名称:
LSTM-人类活动-识别:在智能手机传感器数据集上使用TensorFlow和LSTM RNN的人类活动识别示例。 在六个活动类别中分类运动的类型-Guillaume Chevalier-源码
开发工具:
文件大小: 262kb
下载次数: 0
上传时间: 2021-02-03
详细说明:使用智能手机数据集和LSTM RNN的人类活动识别(HAR)。 将运动类型分为以下六类:
步行,
WALKING_UPSTAIRS,
WALKING_DOWNSTAIRS,
坐下
常设,
铺设。
与传统方法相比,使用具有长短期记忆单元(LSTM)的递归神经网络(RNN)不需要或几乎不需要特征工程。 数据可以直接馈入神经网络,就像黑盒子一样,对问题进行正确建模。 关于活动识别数据集的可以使用大量的特征工程,这是一种结合了经典数据科学技术的信号处理方法。 就数据预处理量而言,此处的方法非常简单。
让我们使用Google简洁的深度学习库TensorFlow演示LSTM的用法,LSTM是一种可以处理顺序数据/时间序列的人工神经网络。
视频数据集概述
点击此链接可观看其中一位参与者在实验中记录的6个活动的视频:
有关输入数据的详细信息
我将在数据上使用LSTM进行学习(作为连接在腰部的手机),以识别用户正在进行的活动类型。 数据集的描述如下:
传感器信号(加速度计和陀螺仪)通过应用噪声滤波器进行预处理,然后在2.56秒和50%重叠(128个读数/窗口)的固定宽度滑动窗口中采
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.