您好,欢迎光临本网站![请登录][注册会员]  
文件名称: DistributedDeepLearning:关于在Batch AI上运行分布式深度学习的教程-源码
  所属分类: 其它
  开发工具:
  文件大小: 437kb
  下载次数: 0
  上传时间: 2021-02-01
  提 供 者: weixin_********
 详细说明:培训关于批处理AI的分布式培训 此仓库是有关如何使用Batch AI以分布式方式训练CNN模型的教程。 涵盖的场景是图像分类,但是该解决方案可以推广到其他深度学习场景,例如分段和对象检测。 图像分类是计算机视觉应用中的常见任务,通常通过训练卷积神经网络(CNN)来解决。 对于具有大型数据集的大型模型,单个GPU的训练过程可能需要数周或数月。 在某些情况下,模型太大,以致于无法在GPU上放置合理的批处理大小。 在这些情况下使用分布式培训有助于缩短培训时间。 在此特定方案中,使用Horovod在ImageNet数据集以及合成数据上训练ResNet50 CNN模型。 本教程演示了如何使用三个最受欢迎的深度学习框架来完成此任务:TensorFlow,Keras和PyTorch。 有许多方法可以以分布式方式训练深度学习模型,包括数据同步和基于同步和异步更新的模型并行方法。 当前,最常见的场景是与同步更新并行的数据-这是最容易实现的,并且对于大多数用例而言已经足够。 在具有同步更新的数据并行分布式训练中,该模型在N个硬件设备之间复制,并且一小批训练样本被划分为N个微批次(参见图2)。 每个设备都
(系统自动生成,下载前可以参看下载内容)

下载文件列表

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度
  • 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.
 输入关键字,在本站1000多万海量源码库中尽情搜索: