您好,欢迎光临本网站![请登录][注册会员]  
文件名称: 深入探究递归神经网络:大牛级的训练和优化如何修成?
  所属分类: 其它
  开发工具:
  文件大小: 361kb
  下载次数: 0
  上传时间: 2021-01-30
  提 供 者: weixin_********
 详细说明:不同于传统FNN,RNN无需在层面之间构建,同时引入定向循环,能够更好地处理高维度信息的整体逻辑顺序。本文中,MIT的NikhilBuduma将带您深入探析RNN的原理、训练和优化等各方面的内容,以及RNN已经获取的一些成就。在深度学习领域,传统的前馈神经网络(feed-forwardneuralnet,简称FNN)具有出色的表现,取得了许多成功,它曾在许多不同的任务上——包括手写数字识别和目标分类上创造了记录。甚至到了今天,FNN在解决分类任务上始终都比其他方法要略胜一筹。尽管如此,大多数专家还是会达成共识:FNN可以实现的功能仍然相当有限。究其原因
(系统自动生成,下载前可以参看下载内容)

下载文件列表

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度
  • 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.
 输入关键字,在本站1000多万海量源码库中尽情搜索: