文件名称:
即将取代RNN结构的Transformer
开发工具:
文件大小: 914kb
下载次数: 0
上传时间: 2021-01-27
详细说明:本文来自于segmentfault,文章介绍了Transformer的整体结构、attention计算过程等相关内容。上图是经典的双向RNN模型,我们知道该模型是通过递归的方式运行,虽然适合对序列数据建模,但是缺点也很明显“它无法并行执行”也就无法利用GPU强大的并行能力(这里插句题外话,正因为GPU强大的并行能力,所以batch_size等于1和等于200运算时间基本差不多),再加上各种门控机制,运行速度很慢。一般而言,编码器输出编码向量C作为解码器输入,但是由于编码向量C中所有的编码器输入值贡献相同,导致序列数据越长信息丢失越多。CNN网络相比RNN网络,它虽然可以并行执行,但是无法一次捕
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.