文件名称:
基于最小体积稀疏正则的高光谱解混方法的研究
开发工具:
文件大小: 9mb
下载次数: 0
上传时间: 2021-01-25
详细说明:高光谱解混的目的在于提取图像中的端元特征和丰度特征。由于高光谱图像空间分辨率低而存在大量混合像元,因此如何从混合像元中提取光谱特征和空间分布信息是高光谱解混面临的难题。基于非负矩阵分解的高光谱解混是一个不适定拟合问题,而且在处理过程中将立方体数据转化为矩阵会导致三维结构信息的丢失。利用最小体积单纯形空间稀疏性,提出一种基于最小体积稀疏正则的高光谱解混方法,能够挖掘出图像中光谱特性和丰度特征的内在关系,减少结构信息的丢失。将凸几何中的最小体积约束与非负矩阵分解相结合,并采用近似交替优化与交替方向乘子法设计出高效的求解算法。最后分别采用合成数据和真实数据进行仿真实验,结果表明该种算法能够有效地提取出高光谱图像的端元特征和丰度特征。
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.