开发工具:
文件大小: 40kb
下载次数: 0
上传时间: 2021-01-21
详细说明:这篇文章主要介绍了简单了解Pandas缺失值处理方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
判断数据是否为NaN:
pd.isnull(df),
pd.notnull(df)
判断缺失值是否存在
np.all(pd.notnull(data)) # 返回false代表有空值
np.any(pd.isnull(data)) #返回true代表有空值
处理方式:
存在缺失值nan,并且是np.nan:
1、删除缺失值:dropna(axis=’rows’)
注:不会修改原数据,需要接受返回值
2、替换缺
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.