您好,欢迎光临本网站![请登录][注册会员]  
文件名称: 基于高阶相似性的属性网络表示学习
  所属分类: 其它
  开发工具:
  文件大小: 856kb
  下载次数: 0
  上传时间: 2021-01-21
  提 供 者: weixin_********
 详细说明:现有的网络表示学习方法缺少对网络中隐含的深层次信息进行挖掘和利用。对网络中的潜在信息做进一步挖掘,提出了潜在的模式结构相似性,定义了网络结构间的相似度分数,用以衡量各个结构之间的相似性,使节点可以跨越不相干的顶点,获取全局结构上的高阶相似性。利用深度学习,融合多个信息源共同参与训练,弥补随机游走带来的不足,使得多个信息源信息之间紧密结合、互相补充,以达到最优的效果。实验选取Lap、DeepWalk、TADW、SDNE、CANE作为对比方法,将3个真实世界网络作为数据集来验证模型的有效性,进行节点分类和链路重构的实验。在节点分类中针对不同数据集和训练比例,性能平均提升1.7个百分点;链路重构实验中,仅需一半维度便实现了更好的性能,最后讨论了不同网络深度下模型的性能提升,通过增加模型的深度,节点分类的平均性能增加了1.1个百分点。
(系统自动生成,下载前可以参看下载内容)

下载文件列表

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度
  • 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.
 输入关键字,在本站1000多万海量源码库中尽情搜索: