开发工具:
文件大小: 188kb
下载次数: 0
上传时间: 2021-01-20
详细说明:过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶
1、过拟合和欠拟合
过拟合:模型的训练误差远小于它在测试数据集上的误差,我们称该现象为过拟合
欠拟合:模型训练误差无法降低.
如何应对欠拟合和过拟合?在这里我们重点讨论两个因素:模型复杂度和训练数据集大小。
1.1.1、模型复杂度
为了解释模型复杂度,我们以多项式函数拟合为例。给定一个由标量数据特征 x 和对应的标量标签 y 组成的训练数据集,多项式函数拟合的目标是找一个 K 阶多项式函数
来近似y.在上式中,wk是模型的权重参数,b是偏差参数。与线性回归相同,多项式函数拟合也使用平方损失函数。特别地,一阶多项式函数拟合又叫线性
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.