您好,欢迎光临本网站![请登录][注册会员]  
文件名称: [Machine Learning] 交叉熵损失函数 v.s. 平方损失函数(CrossEntropy Loss v.s. Square Loss)
  所属分类: 其它
  开发工具:
  文件大小: 85kb
  下载次数: 0
  上传时间: 2021-01-20
  提 供 者: weixin_********
 详细说明:思考 我们会发现,在机器学习实战中,做分类问题的时候经常会使用一种损失函数(Loss Function)——交叉熵损失函数(CrossEntropy Loss)。但是,为什么在做分类问题时要用交叉熵损失函数而不用我们经常使用的平方损失函数呢? 这时候就应该想一下,损失函数需要做什么?怎样的损失函数才是最合适的? 一般而言,我们都希望损失函数能够做到,当我们预测的值跟目标值越远时,在更新参数的时候,应该减去一个更大的值,做到更快速的下降,并且不容易遇到陷入局部最优、鞍点以及平坦区域等问题。具体可看《[Machine Learning] 欠拟合 & 过拟合(Underfitting & Overf
(系统自动生成,下载前可以参看下载内容)

下载文件列表

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度
  • 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.
 输入关键字,在本站1000多万海量源码库中尽情搜索: