您好,欢迎光临本网站![请登录][注册会员]  
文件名称: 基于残差空洞卷积神经网络的网络安全实体识别方法
  所属分类: 其它
  开发工具:
  文件大小: 1mb
  下载次数: 0
  上传时间: 2021-01-20
  提 供 者: weixin_********
 详细说明:近年来,网络安全威胁日益增多,数据驱动的安全智能分析成为网络安全领域研究的热点。特别是以知识图谱为代表的人工智能技术可为多源异构威胁情报数据中的复杂网络攻击检测和未知网络攻击检测提供支撑。网络安全实体识别是威胁情报知识图谱构建的基础。开放网络文本数据中的安全实体构成非常复杂,导致传统的深度学习方法难以准确识别。在BERT(pre-training of deep bidirectional transformers)预训练语言模型的基础上,提出一种基于残差空洞卷积神经网络和条件随机场的网络安全实体识别模型 BERT-RDCNN-CRF。通过BERT模型训练字符级特征向量表示,结合残差卷积与空洞神经网络模型有效提取安全实体的重要特征,最后通过CRF获得每一个字符的BIO标注。在所构建的大规模网络安全实体标注数据集上的实验表明,所提方法取得了比LSTM-CRF模型、BiLSTM-CRF模型和传统的实体识别模型更好的效果。
(系统自动生成,下载前可以参看下载内容)

下载文件列表

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度
  • 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.
 输入关键字,在本站1000多万海量源码库中尽情搜索: