文件名称:
梯度下降算法和牛顿算法原理以及使用python用梯度下降和最小二乘算法求回归系数
开发工具:
文件大小: 340kb
下载次数: 0
上传时间: 2021-01-20
详细说明:梯度下降算法
以下内容参考 微信公众号 AI学习与实践平台 SIGAI
导度和梯度的问题
因为我们做的是多元函数的极值求解问题,所以我们直接讨论多元函数。多元函数的梯度定义为:
其中称为梯度算子,它作用于一个多元函数,得到一个向量。下面是计算函数梯度的一个例子
可导函数在某一点处取得极值的必要条件是梯度为0,梯度为0的点称为函数的驻点,这是疑似极值点。需要注意的是,梯度为0只是函数取极值的必要条件而不是充分条件,即梯度为0的点可能不是极值点。
至于是极大值还是极小值,要看二阶导数/Hessian矩阵,Hessian矩阵我们将在后面的文章中介绍,这是由函数的二阶偏导数构成的矩阵。这分为下面
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.