文件名称:
基于QPSO和极限学习的离散过程神经网络及学习算法
开发工具:
文件大小: 273kb
下载次数: 0
上传时间: 2021-01-14
详细说明:连续过程神经元网络在权函数正交基展开时, 基函数个数无法有效确定, 因此逼近精度不高. 针对该问题, 提出一种离散过程神经元网络, 使用三次样条数值积分处理离散样本和权值的时域聚合运算. 模型训练采用双链量子粒子群完成输入权值的全局寻优, 通过量子旋转门和非门完成种群进化. 局部使用极限学习, 通过Moore-Penrose广义逆计算输出权值. 以时间序列预测为例进行仿真实验, 结果验证了模型的有效性, 且训练收敛能力和逼近能力都有一定程度的提高.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.
相关搜索: