文件名称:
基于量子粒子群的全参数连分式混沌时间序列预测
开发工具:
文件大小: 349kb
下载次数: 0
上传时间: 2021-01-13
详细说明:针对传统混沌时间序列预测模型的复杂性、低精度性和低时效性的缺点, 在倒差商连分式基础上提出全参数连分式模型, 并利用量子粒子群优化算法优化模型参数, 将参数优化问题转化为多维空间上的函数优化问题. 以二阶强迫布鲁塞尔振子和三维二次自治广义Lorenz 系统为模型, 通过四阶Runge-Kutta 法产生混沌时间序列, 并利用基于量子粒子群优化算法的全参数连分式、BP 神经网络和RBF 神经网络分别对混沌时间序列进行单步和多步预测. 仿真结果表明, 基于量子粒子群优化算法的全参数连分式结构简单、精度高、效率高, 该预测模型可被推广和应用.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.
相关搜索: