您好,欢迎光临本网站![请登录][注册会员]  
文件名称: 一种基于GMM-EM的非平衡数据的概率增强算法
  所属分类: 其它
  开发工具:
  文件大小: 320kb
  下载次数: 0
  上传时间: 2021-01-12
  提 供 者: weixin_********
 详细说明:非平衡数据的分类问题是机器学习领域的一个重要研究课题.在一个非平衡数据里,少数类的训练样本明显少于多数类,导致分类结果往往偏向多数类.针对非平衡数据分类问题,提出一种基于高斯混合模型-均值最大化方法(GMM-EM)的概率增强算法.首先,通过高斯混合模型(GMM)与均值最大化算法(EM)建立少数类数据的概率密度函数;其次,根据高概率密度的样本生成新样本的能力比低概率密度的样本更强的性质,建立一种基于少数类样本密度函数的过采样算法,该算法保证少数类数据集在平衡前后的概率分布的一致性,从数据集的统计性质使少数类达到平衡;最后,使用决策树分类器对已经达到平衡的数据集进行分类,并且利用评价指标对分类效果进行评判.通过从UCI和KEEL数据库选出的8组数据集的分类实验,表明了所提出算法比现有算法更有效.
(系统自动生成,下载前可以参看下载内容)

下载文件列表

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度
  • 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.
 相关搜索:
 输入关键字,在本站1000多万海量源码库中尽情搜索: