您好,欢迎光临本网站![请登录][注册会员]  
文件名称: 基于机器视觉深度学习的电站渗水检测识别技术研究
  所属分类: 其它
  开发工具:
  文件大小: 1mb
  下载次数: 0
  上传时间: 2021-01-12
  提 供 者: weixin_********
 详细说明:针对传统的人工检测水库库底排水巡检区域渗水、裂缝的方法存在对工作人员要求过高,检测结果误差过大,检测区域限制过大等缺点,文中提出了一种基于Canny算法与卷积神经网络的裂缝检测识别技术。首先,利用轮式机器人对水电站中可能存在的裂缝进行图像采集,接着借助Canny算法对图像进行预处理并制作成对比数据库,通过数据库训练出能够识别含有裂缝图像的卷积神经网络。最终,将卷积神经网络迁移至机器人的微主板中,使得机器人在巡检过程中可以对渗水、裂缝等异常现象及时报警。实验结果表明,基于本方案的裂缝图像识别率达98.33%,在实际巡检工作中能够发现绝大多数的渗漏危险并给予报警。
(系统自动生成,下载前可以参看下载内容)

下载文件列表

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度
  • 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.
 相关搜索:
 输入关键字,在本站1000多万海量源码库中尽情搜索: