开发工具:
文件大小: 2mb
下载次数: 0
上传时间: 2021-03-20
详细说明:非局部平均(Non-local means,NLM)算法充分利用图像的自相似性与结构信息的冗余性,取得了很好的去噪效果.然而,在强噪声的干扰下,NLM算法中的权函数不能准确度量图像块之间的相似性.因此,很多文献利用图像的梯度信息对权函数做了改进.但是,传统的梯度算子对噪声十分敏感,不能有效地提高相似性度量的准确性.本文将图像的稀疏梯度场(Sparse gradients field,SGF)引入权函数的定义中,提出一种基于稀疏梯度场的非局部图像去噪算法.首先,区别于传统基于局部的梯度算子,提出了基于全局的稀疏梯度场模型,进一步给出一个自适应的稀疏梯度场模型(Adaptive sparse gradients field,ASGF),并利用向前–向后分裂算法求解.然后,利用图像的稀疏梯度场对NLM算法的权函数进行改进,得到本文提出的算法.实验结果表明,无论是客观评价还是视觉效果,本文所提算法的性能优于NLM算法和其他利用梯度信息改进的NLM算法.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.
相关搜索: