文件名称:
dimension-reduction-algorithms:常用降维算法的复现和比较,包括LDA,QDA,PCA,MDS,Isomap,LLE-源码
开发工具:
文件大小: 1mb
下载次数: 0
上传时间: 2021-03-20
详细说明:降维算法
一,介绍
在高维层次下会出现数据样本稀疏,距离计算困难等问题,是所有机器学习方法面临的严峻考验,称为“维数灾难”(维数诅咒)。 ,即通过某种数学变换将数据映射到一个低维空间,在这个低维空间里,数据的密度大大地提高,距离计算更加容易。
二,分类
降维算法可以按照是否有监督,变换是否是线性的细分四类:
无监督的线性降维算法,某种
无监督的非线性降维算法,某些 , , ,
有监督的线性降维算法,某种
有监督的非线性降维算法(缺)
注意:此处线性指的是高维空间->低维空间是线性的。MDS,Isomap是将一个非线性降维变换的转化问题转化为一个线性代数问题,其本身并不是线性的降维算法。
三,总结
在大部分实际应用情况下,数据降维是作为后续任务的一个预处理步骤,需要通过比较降维后学习器的效果来对一个具体的任务使用某种降维算法。
流形学习中的ISOMAP,LLE等算法非常依赖建图的质量
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.
相关搜索: