开发工具:
文件大小: 42kb
下载次数: 0
上传时间: 2010-10-10
详细说明: 几个c程序,希望有用 include /* In the VMS compiler, M_PI is not defined in math.h */ #ifdef vms #define M_PI 3.14159265358979323846 #endif #ifndef KR #define M_PI 3.14159265358979323846 #endif #define FALSE 0 #define TRUE 1 #define BIG 1e10 #define SMALL 1e-10 #define ORDER5 1e-5 #define ORDER4 1e-4 #define ABS(x) ((x) >= 0 ? (x) : -(x)) #define MIN(a,b) ((a) <= (b) ? (a) : (b)) #define MAX(a,b) ((a) >= (b) ? (a) : (b)) /* Table of constant values */ static long neg_i1 = -1; static long pos_i1 = 1; stat ic long pos_i2 = 2; static long pos_i4 = 4; static long pos_i5 = 5; static float neg_f1 = -1.0; static float pos_f2 = 2.0; static double pos_d10 = 10.0; typedef struct { float r, i; } complex; typedef struct { double r, i; } doublecomplex; /* .................End of include file.................*/ /* SPBFCT 11/14/85 */ /* GENERATES (I1)!/(I1-I2)!=I1*(I1-1)*...*(I1-I2+1). */ /* NOTE: 0!=1 AND SPBFCT(I,I)=SPBFCT(I,I-1)=I!. */ #ifndef KR double spbfct(long *i1, long *i2) #else double spbfct(i1, i2) long *i1, *i2; #endif { /* Local variables */ long i; double ret_val; ret_val = 0.0; if (*i1 < 0 || *i2 < 0 || *i2 > *i1) { return(ret_val); } ret_val = 1.0; for (i = *i1 ; i >= (*i1 - *i2 + 1) ; --i) { ret_val *= (double) i; } return(ret_val); } /* spbfct */ /* SPBILN 11/13/85 */ /* CONVERTS ANALOG H(S) TO DIGITAL H(Z) VIA BILINEAR TRANSFORM */ /* ANALOG TRANSFER FUNCTION DIGITAL TRANSFER FUNCTION */ /* D(L)*S**L+.....+D(0) B(0)+......+B(L)*Z**-L */ /* H(S)=--------------------- H(Z)=---------------------- */ /* C(L)*S**L+.....+C(0) 1+.......+A(L)*Z**-L */ /* H(S) IS ASSUMED TO BE PRE-SCALED AND PRE-WARPED */ /* LN SPECIFIES THE LENGTH OF THE COEFFICIENT ARRAYS */ /* FILTER ORDER L IS COMPUTED INTERNALLY */ /* WORK IS AN INTERNAL ARRAY (2D) SIZED TO MATCH COEF ARRAYS */ /* IERROR=0 NO ERRORS DETECTED IN TRANSFORMATION */ /* 1 ALL ZERO TRANSFER FUNCTION */ /* 2 INVALID TRANSFER FUNCTION; Y(K) COEF=0 */ #ifndef KR void spbiln(float *d, float *c, long *ln, float *b, float *a, float *work, long *error) #else void spbiln(d, c, ln, b, a, work, error) long *ln, *error; float *d, *c, *b, *a, *work; #endif { /* Local variables */ long i, j, l, zero_func, work_dim1; float scale, tmp; double atmp; zero_func = TRUE; for (i = *ln ; i >= 0 && zero_func ; --i) { if (c[i] != 0.0 || d[i] != 0.0) { zero_func = FALSE; } } if ( zero_func ) { *error = 1; return; } work_dim1 = *ln + 1; l = i + 1; for (j = 0 ; j <= l ; ++j) { work[j * work_dim1] = 1.0; } tmp = 1.0; for (i = 1 ; i <= l ; ++i) { tmp = tmp * (float) (l - i + 1) / (float) i; work[i] = tmp; } for (i = 1 ; i <= l ; ++i) { for (j = 1 ; j <= l ; ++j) { work[i + j * work_dim1] = work[i + (j - 1) * work_dim1] - work[i - 1 + j * work_dim1] - work[i - 1 + (j - 1) * work_dim1]; } } for (i = l ; i >= 0 ; --i) { b[i] = 0.0; atmp = 0.0; for (j = 0 ; j <= l ; ++j) { b[i] += work[i + j * work_dim1] * d[j]; atmp += (double) work[i + j * work_dim1] * c[j]; } scale = (double) atmp; if (i != 0) { a[i - 1] = (double) atmp; } } if (scale == 0.0) { *error = 2; return; } b[0] /= scale; for (i = 1 ; i <= l ; ++i) { b[i] /= scale; a[i - 1] /= scale; } if (l < *ln) { for (i = l + 1 ; i <= *ln ; ++i) { b[i] = 0.0; a[i - 1] = 0.0; } } *error = 0; return; } /* spbiln */ /* SPBSSL 11/13/85 */ /* GENERATES ANALOG FILTER COEFFICIENTS FOR LTH ORDER */ /* NORMALIZED LOWPASS BESSEL FILTER */ /* COEFFICIENTS ARE RETURNED IN ARRAYS D AND C */ /* LN SPECIFIES ARRAY SIZE (LN>=L) */ /* WSCL CONTROLS FREQUENCY SCALING SUCH THAT RESPONSE AT 1 RAD/SEC */ /* IS EQUAL TO THAT OF UNSCALED H(S) AT WSCL RAD/SEC */ /* IERROR=0 NO ERRORS DETECTED */ /* 1 INVALID FILTER ORDER (L<=0 OR L>=LN) */ /* 2 INVALID SCALE PARAMETER (WSCL<=0) */ #ifndef KR void spbssl(long *l, float *wscl, long *ln, float *d, float *c, long *error) #else void spbssl(l, wscl, ln, d, c, error) long *l, *ln, *error; float *d, *c, *wscl; #endif { /* Builtin functions */ long pow_ii(); double pow_ri(); /* Local variables */ double spbfct(); long k, ll, tmp_int1, tmp_int2; if (*l <= 0 || *l > *ln) { *error = 1; return; } if (*wscl <= 0.0) { *error = 2; return; } for (ll = 0 ; ll <= *ln ; ++ll) { d[ll] = 0.0; c[ll] = 0.0; } for (k = 0 ; k <= *l ; ++k) { tmp_int1 = (*l * 2) - k; tmp_int2 = *l - k; c[k] = pow_ri(wscl, &k) * spbfct(&tmp_int1,&tmp_int1) / (pow_ii(&pos_i2, &tmp_int2) * spbfct(&k,&k) * spbfct(&tmp_int2,&tmp_int2)); } d[0] = c[0]; *error = 0; return; } /* spbssl */ /* SPBWCF 11/13/85 */ /* GENERATES KTH SECTION COEFFICIENTS FOR LTH ORDER NORMALIZED */ /* LOWPASS BUTTERWORTH FILTER */ /* SECOND ORDER SECTIONS: K<=(L+1)/2 */ /* ODD ORDER L: FINAL SECTION WILL CONTAIN 1ST ORDER POLE */ /* LN DEFINES COEFFICIENT ARRAY SIZE */ /* ANALOG COEFFICIENTS ARE RETURNED IN D AND C */ /* IERROR=0 NO ERRORS DETECTED */ /* 1 INVALID FILTER ORDER L */ /* 2 INVALID SECTION NUMBER K */ #ifndef KR void spbwcf(long *l, long *k, long *ln, float *d, float *c, long *error) #else void spbwcf(l, k, ln, d, c, error) long *l, *k, *ln, *error; float *d, *c; #endif { /* Local variables */ long i; float tmp; if (*l <= 0) { *error = 1; return; } if (*k <= 0 || *k > ((*l + 1) / 2)) { *error = 2; return; } d[0] = 1.0; c[0] = 1.0; for (i = 1 ; i <= *ln ; ++i) { d[i] = 0.0; c[i] = 0.0; } tmp = (float) *k - (*l + 1.0) / 2.0; if (tmp == 0.0) { c[1] = 1.0; } else { c[1] = (float) (-2.0 * cos((double) ((*k * 2) + *l - 1) * M_PI / (double) (*l * 2))); c[2] = 1.0; } *error = 0; return; } /* spbwcf */ 还有其它的几个例子 ...展开收缩
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.