文件名称:
基于分布式学习的大规模网络入侵检测算法(pdf)摘 要: 计算机网络的高速发展,使处理器的速度明显低于骨干网的传输速度,这使得传统的入侵检测方法无法 应用于大规模网络的检测.目前,解决这一问题的有效办法是将海量数据分割成小块数据,由分布
开发工具:
文件大小: 598kb
下载次数: 0
上传时间: 2009-06-10
详细说明: 摘 要: 计算机网络的高速发展,使处理器的速度明显低于骨干网的传输速度,这使得传统的入侵检测方法无法 应用于大规模网络的检测.目前,解决这一问题的有效办法是将海量数据分割成小块数据,由分布的处理节点并行理.这种分布式并行处理的难点是分割机制,为了不破坏数据的完整性,只有采用复杂的分割算法,这同时也使分割 模块成为检测系统新的瓶颈.为了克服这个问题,提出了分布式神经网络学习算法,并将其用于大规模网络入侵检 测.该算法的优点是,大数据集可被随机分割后分发给独立的神经网络进行并行学习,在降低分割算法复杂度的同 时,保证学 习结果的完整性.对该算法的测试实验首先采用基准测试数据 circle-in-the-square 测试了其学习能力,并 与ARTMAP(adaptive resonance theory supervised predictive mapping)和BP(back propagation)神经网络进行了比较; 然后采用标准的入侵检测测试数据集KDD’99 Data Set测试了其对大规模入侵的检测性能.通过与其他方法在相同 数据集上的测试结果的比较表明,分布式学习算法同样具有较高的检测效率和较低的误报率. 关键词: 入侵检测系统;网络行为;神经网络;分布式学习 ...展开收缩
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.