文件名称:
网络领域最新进展--感知网络国外经典书集
开发工具:
文件大小: 2mb
下载次数: 0
上传时间: 2011-12-07
详细说明: For complex computer networks with many tunable parameters and network performance objectives, the task of selecting the ideal network operating state is difficult. To improve the performance of these kinds of networks, this research proposes the idea of the cognitive network. A cognitive network is a network composed of elements that, through learning and reasoning, dynamically adapt to varying network conditions in order to optimize end-to-end performance. In a cognitive network, decisions are made to meet the requirements of th e network as a whole, rather than the individual network components. We examine the cognitive network concept by first providing a definition and then outlin- ing the difference between it and other cognitive and cross-layer technologies. From this definition, we develop a general, three-layer cognitive network framework, based loosely on the framework used for cognitive radio. In this framework, we consider the possibility of a cognitive process consisting of one or more cognitive elements, software agents that operate somewhere between autonomy and cooperation. To understand how to design a cognitive network within this framework we identify three critical design decisions that affect the performance of the cognitive network: the selfishness of the cognitive elements, their degree of ignorance, and the amount of control they have over the network. To evaluate the impact of these decisions, we created a metric called the price of a feature, defined as the ratio of the network performance with a certain design decision to the performance without the feature. To further aid in the design of cognitive networks, we identify classes of cognitive networks that are structurally similar to one another. We examined two of these classes: the po- tential class and the quasi-concave class. Both classes of networks will converge to Nash Equilibrium under selfish behavior and in the quasi-concave class this equilibrium is both Pareto and globally optimal. Furthermore, we found the quasi-concave class has other desir- able properties, reacting well to the absence of certain kinds of information and degrading gracefully under reduced network control. In addition to these analytical, high level contributions, we develop cognitive networks for two open problems in resource management for self-organizing networks, validating and illustrating the cognitive network approach. For the first problem, a cognitive network is shown to increase the lifetime of a wireless multicast route by up to 125%. For this problem, we show that the price of selfishness and control are more significant than the price of ignorance. For the second problem, a cognitive network minimizes the transmission power and spectral impact of a wireless network topology under static and dynamic conditions. The cognitive network, utilizing a distributed, selfish approach, minimizes the maximum power in the topology and reduces (on average) the channel usage to within 12% of the minimum channel assignment. For this problem, we investigate the price of ignorance under dynamic networks and the cost of maintaining knowledge in the network. Today’s computer networking technology will not be able to solve the complex problems that arise from increasingly bandwidth-intensive applications competing for scarce resources. Cognitive networks have the potential to change this trend by adding intelligence to the network. This work introduces the concept and provides a foundation for future investigation and implementation. ...展开收缩
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.