您好,欢迎光临本网站![请登录][注册会员]  
文件名称: semi-supervised learning with kernel density estimation
  所属分类: 专业指导
  开发工具:
  文件大小: 578kb
  下载次数: 0
  上传时间: 2013-07-24
  提 供 者: ouxi*****
 详细说明: Insufficiency of labeled training data is a major obstacle for automatically annotating large-scale video databases with semantic concepts. Existing semi-supervised learning algorithms based on parametric models try to tackle this issue by incorporating the information in a large amount of unlabeled data. However, they are based on a “model assumption” that the assumed generative model is correct, which usually cannot be satisfied in automatic video annotation due to the large variations of video semantic concepts. In this paper , we propose a novel semi-supervised learning algorithm, named Semi-Supervised Learning by Kernel Density Estimation (SSLKDE), which is based on a non-parametric method, and therefore the “model assumption” is avoided. While only labeled data are utilized in the classical Kernel Density Estimation (KDE) approach, in SSLKDE both labeled and unlabeled data are leveraged to estimate class conditional probability densities based on an extended form of KDE. We also investigate the connection between SSLKDE and existing graph-based semi-supervised learning algorithms. Experiments prove that SSLKDE significantly outperforms existing supervised methods for video annotation. ...展开收缩
(系统自动生成,下载前可以参看下载内容)

下载文件列表

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度
  • 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.
 相关搜索: 半监督学习 ACM论文
 输入关键字,在本站1000多万海量源码库中尽情搜索: