文件名称:
解方程软件组合(多元方程组、非线性方程和常微分方程)
开发工具:
文件大小: 8mb
下载次数: 0
上传时间: 2009-09-17
详细说明: 本资源涵盖解多元方程组、非线性方程和常微分方程的软件组合,介绍如下: 线性方程组的数值解法: 线性方程组亦即多元一次方程组。在自然科学与工程技术中,很多问题的解决常常归结为解线性方程组,如电学中的网络问题,船体数学放样中的建立三次样条函数问题,机械和建筑结构的设计和计算等等。因此,如何利用电子计算机这一强有力的计算工具去求解线性方程组,是一个非常重要的问题。线性方程组的解法分直接(解)法{是指在没有舍入误差的假设下,经过有限步运算即可求得方程组的精确解的方法。}和迭代(解)法{是用某种极限过程去逐步逼近线性方程组精确 解的方法,即是从一个初始向量x0出发,按照一定的迭代格式产生一个向量序列xk,使其收敛到方程组A*x=b的解}。该部分就是针对线性方程组求解而设计的,内容包括:线性方程组的直接解法:Gauss消去法、Gauss列主元消去法、Gauss全主元消去法、列主元消去法应用『列主元求逆矩阵、列主元求行列式、矩阵的三角分解』、LU分解法、平方根法、改进的平方根法、追赶法(解三对角)、列主元三角分解法;线性方程组的迭代解法:雅可比迭代法、高斯-塞德尔迭代法、逐次超松驰迭代法;迭代法的收敛性『正定矩阵判断、向量范数、矩阵范数、严格对角站优矩阵判断』。 非线性方程的数值解法: 在科学研究与工程技术中常会遇到求解非线性方程f(x)=0的问题。而方程f(x)是多项式或超越函数又分为代数方程或超越方程。对于不高于四次的代数方程已有求根公式,而高于四次的代数方程则无精确的求根公式,至于超越方程就更无法求其精确解了。因此,如何求得满足一定精度要求的方程的近似根也就成为了广大科技工作者迫切需要解决的问题。该部分就是针对这一问题而设计的,内容包括:二分法、迭代法、迭代加速法、埃特金加速法、牛顿切线法、弦截法。 常微分方程的数值解法: 常微分方程的求解问题在实践中经常遇到,但我们只知道一些特殊类型的常微分方程的解析解。在科学和工程问题中遇到的常微分方程的往往很复杂,在许多问题中,并不需要方程解的表达式,而仅仅需要获得解在若干点的就算解即可。因此,研究常微分方程的的数值解就很有必要。该部分就是针对这些而设计的,内容包括:欧拉(Euler)方法、龙格库塔(Runge-Kutta)方法、线性多步方法 ...展开收缩
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.