您好,欢迎光临本网站![请登录][注册会员]  
文件名称: Supervised Descent Method and its Applications to Face Alignment
  所属分类: 其它
  开发工具:
  文件大小: 1mb
  下载次数: 0
  上传时间: 2014-01-14
  提 供 者: han_ji*******
 详细说明: Many computer vision problems (e.g., camera calibration, image alignment, structure from motion) are solved through a nonlinear optimization method. It is generally accepted that 2 nd order descent methods are the most robust, fast and reliable approaches for nonlinear optimization of a general smooth function. However, in the context of computer vision, 2 nd order descent methods have two main drawbacks: (1) The function might not be analytically differentiable and numerical approximations are impractical. (2) The Hessian might be large and not positive definite. To address these issues, this paper proposes a Supervised Descent Method (SDM) for minimizing a Non-linear Least Squares (NLS) function. During training, the SDM learns a sequence of descent directions that minimizes the mean of NLS functions sampled at different points. In testing, SDM minimizes the NLS objective using the learned descent directions without computing the Jacobian nor the Hessian. We illustrate the benefits of our approach in synthetic and real examples, and show how SDM achieves state-ofthe-art performance in the problem of facial feature detection. The code is available at www.humansensing.cs. cmu.edu/intraface. 1. Introduction Mathematical optimization has a fundamental impact in solving many problems in computer vision. This fact is apparent by having a quick look into any major conference in computer vision, where a significant number of papers use optimization techniques. Many important problems in computer vision such as structure from motion, image alignment, optical flow, or camera calibration can be posed as solving a nonlinear optimization problem. There are a large number of different approaches to solve these continuous nonlinear optimization problems based on first and second order methods, such as gradient descent [1] for dimensionality reduction, Gauss-Newton for image alignment [22, 5, 14] or Levenberg-Marquardt for structure from motion [8]. “I am hungry. Where is the apple? Gotta do Gradient descent” ...展开收缩
(系统自动生成,下载前可以参看下载内容)

下载文件列表

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度
  • 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.
 相关搜索: Supervised Descent Method
 输入关键字,在本站1000多万海量源码库中尽情搜索: