您好,欢迎光临本网站![请登录][注册会员]  
文件名称: 图像处理和分析-变分,偏微分方程,小波及随机方法(Image processing and analysis - variational, pde, wavelet and stochastic methods)
  所属分类: Java
  开发工具:
  文件大小: 8mb
  下载次数: 0
  上传时间: 2009-10-09
  提 供 者: luxiao******
 详细说明: 1 Introduction 1.1 Dawning of the Era of Imaging Sciences 1.1.1 Image Acquisition 1.1.2 Image Processing 1.1.3 Image Interpretation and Visual Intelligence 1.2 Image Processing by Examples 1.2.1 Image Contrast Enhancement 1.2.2 Image Denoisirg 1.2.3 Image Deblur ring 1.2.4 Image Inpainting 1.2.5 Image Segmentation 1.3 An Overview of Methodologies in Image Processing 1.3.1 Morphological Approach 1.3.2 Fourier and Spectral Analysis 1.3.3 Wavelet and Space-Scale Analysis 1.3.4 Stochastic Modeling 1.3.5 Variaticnal Methods 1.3.6 Partial Differential Equations (PDEs) 1.3.7 Different Approaches Are Intrinsically Interconnected 2d6 1.4 Organization of the Book 1.5 How to Read the Bcok 2 Some Modern Image Analysis Tools 2.1 Geometry of Curves and Surfaces 2.1.I Geometry of Curves 2.1.2 Geometry of Surfaces in Three Dimensions 2.1.3 Hausdorff Measures and Dimensions 2.2 Functions with Bounded Variations 2.2.1 Total Variatien as a Radon Measure 2.2.2 Basic Properties of BV Functions 2.2.3 The Co-Area Formula 2.3 Elements of Thermodynamics and Statistical Mechanics 2.3.1 Essentials of Thermodynamics 2.3.2 Entropy and Potentials 2.3.3 Statistical Mechanics of Ensembles 2.4 Bayesian Statistical Inference 2.4.1 Image Processing or Visual Perception as Inference 2.4.2 Bayesian Inference: Bias 2d6 Due to Prior Knowledge 2.4.3 Bayesian Method in Image Processing 2.5 Linear and Nonlinear Filtering and Diffusion 2.5.1 Point Spreading and Markov Transition 2.5.2 Linear Filtering and Diffusion 2.5.3 Nonlinear Filtering and Diffusion 2.6 Wavelets and Multiresolution Analysis 2.6.1 Quest for New Image Analysis Tools 2.6.2 Early Edge Theory and Marr’s Wavelets 2.6.3 Windowed Frequency Analysis and Gabor Wavelets 2.6.4 Frequency-Window Coupling: Malvar-Wilson Wavelets 2.6.5 The Framework of Multiresolution Analysis (MRA) 2.6.6 Fast Image Analysis and Synthesis via Filter Banks 3 Image Modeling and Representation 3.1 Modeling and Representation: What, Why, and How 5b4 3.2 Deterministic Image Models 3.2.1 Images as Distributions (Generalized Functions) 3.2.2 Lp Images 3.2.3 Sobolev Images Hn(Ω) 3.2.4 BV Images 3.3 Wavelets and Multiscale Representation 3.3.1 Construction of 2-D Wavelets 3.3.2 Wavelet Responses to Typical Image Features 3.3.3 Besov Images and Sparse Wavelet Representation 3.4 Lattice and Random Field Representation 3.4.1 Natural Images of Mother Nature 3.4.2 Images as Ensembles and Distributions 3.4.3 Images as Gibbs’ Ensembles 3.4.4 Images as Markov Random Fields 3.4.5 Visual Filters and Filter Banks 3.4.6 Entropy-Based Learning of Image Patterns 3.5 Level-Set Representation 3.5.1 Classical Level Sets 3.5.2 Cumulative Level Sets 3.5.3 Level-Set Synthesis 3.5.4 An Example: Level Sets of Piecewise Constant Images 3.5.5 High Order Regularity of Level Sets 3.5.6 Statistics of Level Sets of Natural Images 3.6 The Mumford-Shah Free Boundary Image Model 3.6.1 Piecewise Constant 1-D Images: Analysis and Synthesis 3.6.2 Piecewise Smooth 1-D Images: First Order Representation 3.6.3 Piecewise Smooth I-D Images: Poisson Representation 3.6.4 Piecewise Smooth 2-D Images 3.6.5 The Mumford-Shah Model 3.6.6 The Role of Special B V Images 4 Image Denoising 4. 1 Noise: Origins. Physics. and Models 4.l. 1 Origins and Physics of Noise 4.1.2 A Brief Overview of 1-D Stochastic Signals 5b4 4.1.3 Stochastic Models of Noises 4.1.4 Analog White Noises as Random Generalized Functions 4.1.5 Random Signals from Stochastic Differential Equations 4.l.6 2-D Stochastic Spatial Signals: Random Fields 4.2 Linear Denoising: Lowpass Filtering 4.2.1 Signal vs. Noise 4.2.2 Denoising via Linear Filters and Diffusion 4.3 Data-Driven Optimal Filtering: Wiener Filters 4.4 Wavelet Shrinkage Denoising 4.4.1 Shrinkage: Quasi-statistical Estimation of Singletons 4.4.2 Shrinkage: Variational Estimation of Singletons 4.4.3 Denoising via Shrinking Noisy Wavelet Components 4.4.4 Variational Denoising of Noisy Besov Images 4.5 Variational Denoising Based on BV Image Model 4.5.1 TV. Robust Statistics. and Median 4.5.2 The Role of TV and BV Image Model 4.5.3 Biased Iterated Median Filtering 4.5.4 Rudin. Osher. and Fatemi s TV Denoising Model 4.5.5 Computational Approaches to TV Denoising 4.5.6 Duality for the TV Denoising Model 4.5.7 Solution Structures of the TV Denoising Model 4.6 Denoising via Nonlinear Diffusion and Scale-Space Theory 4.6.1 Perona and Malik s Nonlinear Diffusion Model 4.6.2 Axiomatic Scale-Space Theory 4.7 Denoising Salt-and-Pepper Noise 4.8 Multichannel TV Denoising 4.8.1 Variational TV Denoising of Multichannel Images 4.8.2 Three Versions of TV 5 Image Deblurring 5.1 Blur: Physical Origins and Mathematical Models 5.1.1 Physical Origi 5b4 ns 5.1.2 Mathematical Models of Blurs 5.1.3 Linear vs. Nonlinear Blurs 5.2 Ill-posedness and Regularization 5.3 Deblurring with Wiener Filters 5.3.1 Intuition on Filter-Based Deblurring 5.3.2 Wiener Filtering 5.4 Deblurring of BV Images with Known PSF 5.4.1 The Variational Model 5.4.2 Existence and Uniqueness 5.4.3 Computation 5.5 Variational Blind Deblurring with Unknown PSF 5.5.1 Parametric Blind Deblurring 5.5.2 Parametric-Field-Based Blind Deblurring 5.5.3 Nonparametric Blind Deblurring 6 Image Inpainting 6.1 A Brief Review on Classical Interpolation Schemes 6.1.1 Polynomial Interpolation 6.1.2 Trigonometric Polynomial Interpolation 6.1.3 Spline Interpolation 6.1.4 Shannon s Sampling Theorem 6.1.5 Radial Basis Functions and Thin-Plate Splines 6.2 Challenges and Guidelines for 2-D Image Inpainting 6.2.1 Main Challenges for Image Inpainting 6.2.2 General Guidelines for Image Inpainting 6.3 Inpainting of Sobolev Images: Green s Formulae 6.4 Geometric Modeling of Curves and Images 6.4.1 Geometric Curve Models 6.4.2 2-. 3-Point Accumulative Energies. Length. and Curvature. 6.4.3 Image Models via Functionalizing Curve Models 6.4.4 Image Models with Embedded Edge Models 6.5 Inpainting BV Images (via the TV Radon Measure) 6.5.1 Formulation of the TV Inpainting Model 6.5.2 Justification of TV Inpainting by Visual Perception 6.5.3 Computa 5b4 tion of TV lnpainting 6.5.4 Digital Zooming Based on TV Inpainting 6.5.5 Edge-Based Image Coding via Inpainting 6.5.6 More Examples and Applications of TV Inpainting 6.6 Error Analysis for Image Inpainting 6.7 Inpainting Piecewise Smooth Images via Mumford and Shah 6.8 Image Inpainting via Euler s Elasticas and Curvatures 6.8.1 Inpainting Based on the Elastica Image Model 6.8.2 Inpainting via Mumford-Shah-Euler Image Model 6.9 Inpainting of Meyer s Texture 6.10 Image Inpainting with Missing Wavelet Coefficients 6.11 PDE Inpainting: Transport. Diffusion. and Navier-Stokes 6.11.1 Second Order Interpolation Models 6.11.2 A Third Order PDE Inpainting Model and Navier-Stokes …… 需要安装 djvu阅读器 ...展开收缩
(系统自动生成,下载前可以参看下载内容)

下载文件列表

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度
  • 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.
 输入关键字,在本站1000多万海量源码库中尽情搜索: