您好,欢迎光临本网站![请登录][注册会员]  
文件名称: 移动渐近线法
  所属分类: 嵌入式
  开发工具:
  文件大小: 12kb
  下载次数: 0
  上传时间: 2015-04-22
  提 供 者: liyunia********
 详细说明: This function mmasub performs one MMA-iteration, aimed at % solving the nonlinear programming problem: % % Minimize f_0(x) + a_0*z + sum( c_i*y_i + 0.5*d_i*(y_i)^2 ) % subject to f_i(x) - a_i*z - y_i <= 0, i = 1,...,m % xmin_j <= x_j <= xmax_j, j = 1,...,n % z >= 0, y_i >= 0, i = 1,...,m %*** INPUT: % % m = The number of general constraints. % n = The number of variables x_j. % iter = Current iteration number ( =1 the first time mmasub i s called). % xval = Column vector with the current values of the variables x_j. % xmin = Column vector with the lower bounds for the variables x_j. % xmax = Column vector with the upper bounds for the variables x_j. % xold1 = xval, one iteration ago (provided that iter>1). % xold2 = xval, two iterations ago (provided that iter>2). % f0val = The value of the objective function f_0 at xval. % df0dx = Column vector with the derivatives of the objective function % f_0 with respect to the variables x_j, calculated at xval. % df0dx2 = Column vector with the non-mixed second derivatives of the % objective function f_0 with respect to the variables x_j, % calculated at xval. df0dx2(j) = the second derivative % of f_0 with respect to x_j (twice). % Important note: If second derivatives are not available, % simply let df0dx2 = 0*df0dx. % fval = Column vector with the values of the constraint functions f_i, % calculated at xval. % dfdx = (m x n)-matrix with the derivatives of the constraint functions % f_i with respect to the variables x_j, calculated at xval. % dfdx(i,j) = the derivative of f_i with respect to x_j. % dfdx2 = (m x n)-matrix with the non-mixed second derivatives of the % constraint functions f_i with respect to the variables x_j, % calculated at xval. dfdx2(i,j) = the second derivative % of f_i with respect to x_j (twice). % Important note: If second derivatives are not available, % simply let dfdx2 = 0*dfdx. % low = Column vector with the lower asymptotes from the previous % iteration (provided that iter>1). % upp = Column vector with the upper asymptotes from the previous % iteration (provided that iter>1). % a0 = The constants a_0 in the term a_0*z. % a = Column vector with the constants a_i in the terms a_i*z. % c = Column vector with the constants c_i in the terms c_i*y_i. % d = Column vector with the constants d_i in the terms 0.5*d_i*(y_i)^2. % %*** OUTPUT: % % xmma = Column vector with the optimal values of the variables x_j % in the current MMA subproblem. % ymma = Column vector with the optimal values of the variables y_i % in the current MMA subproblem. % zmma = Scalar with the optimal value of the variable z % in the current MMA subproblem. % lam = Lagrange multipliers for the m general MMA constraints. % xsi = Lagrange multipliers for the n constraints alfa_j - x_j <= 0. % eta = Lagrange multipliers for the n constraints x_j - beta_j <= 0. % mu = Lagrange multipliers for the m constraints -y_i <= 0. % zet = Lagrange multiplier for the single constraint -z <= 0. % s = Slack variables for the m general MMA constraints. % low = Column vector with the lower asymptotes, calculated and used % in the current MMA subproblem. % upp = Column vector with the upper asymptotes, calculated and used % in the current MMA subproblem. ...展开收缩
(系统自动生成,下载前可以参看下载内容)

下载文件列表

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度
  • 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.
 相关搜索: MMA算法
 输入关键字,在本站1000多万海量源码库中尽情搜索: