文件名称:
Mastering OpenCV with Practical Computer Vision Projects
开发工具:
文件大小: 6mb
下载次数: 0
上传时间: 2015-06-26
详细说明: Preface 1 Chapter 1: Cartoonifier and Skin Changer for Android 7 Accessing the webcam 9 Main camera processing loop for a desktop app 10 Generating a black-and-white sketch 11 Generating a color painting and a cartoon 12 Generating an "evil" mode using edge filters 14 Generating an "alien" mode using skin detection 16 Skin-detection algorithm 16 Showing the user where to put their face 17 Implementation of the skin-color changer 19 Porting from desktop to Android 24 Setting up an Android project that uses Ope nCV 24 Color formats used for image processing on Android 25 Input color format from the camera 25 Output color format for display 26 Adding the cartoonifier code to the Android NDK app 28 Reviewing the Android app 30 Cartoonifying the image when the user taps the screen 31 Saving the image to a file and to the Android picture gallery 33 Showing an Android notification message about a saved image 36 Changing cartoon modes through the Android menu bar 37 Reducing the random pepper noise from the sketch image 40 Showing the FPS of the app 43 Using a different camera resolution 43 Customizing the app 44 Summary 45 Chapter 2: Marker-based Augmented Reality on iPhone or iPad 47 Creating an iOS project that uses OpenCV 48 Adding OpenCV framework 49 Including OpenCV headers 51 Application architecture 52 Marker detection 62 Marker identification 64 Grayscale conversion 64 Image binarization 65 Contours detection 66 Candidates search 67 Marker code recognition 72 Reading marker code 72 Marker location refinement 74 Placing a marker in 3D 76 Camera calibration 76 Marker pose estimation 78 Rendering the 3D virtual object 82 Creating the OpenGL rendering layer 82 Rendering an AR scene 85 Summary 92 References 92 Chapter 3: Marker-less Augmented Reality 93 Marker-based versus marker-less AR 94 Using feature descriptors to find an arbitrary image on video 95 Feature extraction 95 Definition of a pattern object 98 Matching of feature points 98 PatternDetector.cpp 99 Outlier removal 100 Cross-match filter 101 Ratio test 101 Homography estimation 102 Homography refinement 104 Putting it all together 107 Pattern pose estimation 108 PatternDetector.cpp 108 Obtaining the camera-intrinsic matrix 110 Pattern.cpp 113 Application infrastructure 114 ARPipeline.hpp 115 ARPipeline.cpp 115 Enabling support for 3D visualization in OpenCV 116 Video capture using OpenCV 118 Rendering augmented reality 119 ARDrawingContext.hpp 119 ARDrawingContext.cpp 120 Demonstration 122 main.cpp 123 Summary 126 References 127 Chapter 4: Exploring Structure from Motion Using OpenCV 129 Structure from Motion concepts 130 Estimating the camera motion from a pair of images 132 Point matching using rich feature descriptors 132 Point matching using optical flow 134 Finding camera matrices 139 Reconstructing the scene 143 Reconstruction from many views 147 Refinement of the reconstruction 151 Visualizing 3D point clouds with PCL 155 Using the example code 158 Summary 159 References 160 Chapter 5: Number Plate Recognition Using SVM and Neural Networks 161 Introduction to ANPR 161 ANPR algorithm 163 Plate detection 166 Segmentation 167 Classification 173 Plate recognition 176 OCR segmentation 177 Feature extraction 178 OCR classification 181 Evaluation 185 Summary 188 Chapter 6: Non-rigid Face Tracking 189 Overview 191 Utilities 191 Object-oriented design 191 Data collection: Image and video annotation 193 Training data types 194 Annotation tool 198 Pre-annotated data (The MUCT dataset) 198 Geometrical constraints 199 Procrustes analysis 202 Linear shape models 205 A combined local-global representation 207 Training and visualization 209 Facial feature detectors 212 Correlation-based patch models 214 Learning discriminative patch models 214 Generative versus discriminative patch models 218 Accounting for global geometric transformations 219 Training and visualization 222 Face detection and initialization 224 Face tracking 228 Face tracker implementation 229 Training and visualization 231 Generic versus person-specific models 232 Summary 233 References 233 Chapter 7: 3D Head Pose Estimation Using AAM and POSIT 235 Active Appearance Models overview 236 Active Shape Models 238 Getting the feel of PCA 240 Triangulation 245 Triangle texture warping 247 Model Instantiation – playing with the Active Appearance Model 249 AAM search and fitting 250 POSIT 253 Diving into POSIT 253 POSIT and head model 256 Tracking from webcam or video file 257 Summary 259 References 260 Chapter 8: Face Recognition using Eigenfaces or Fisherfaces 261 Introduction to face recognition and face detection 261 Step 1: Face detection 263 Implementing face detection using OpenCV 264 Loading a Haar or LBP detector for object or face detection 265 Accessing the webcam 266 Detecting an object using the Haar or LBP Classifier 266 Detecting the face 268 Step 2: Face preprocessing 270 Eye detection 271 Eye search regions 272 Step 3: Collecting faces and learning from them 281 Collecting preprocessed faces for training 283 Training the face recognition system from collected faces 285 Viewing the learned knowledge 287 Average face 289 Eigenvalues, Eigenfaces, and Fisherfaces 290 Step 4: Face recognition 292 Face identification: Recognizing people from their face 292 Face verification: Validating that it is the claimed person 292 Finishing touches: Saving and loading files 295 Finishing touches: Making a nice and interactive GUI 295 Drawing the GUI elements 297 Checking and handling mouse clicks 306 Summary 308 References 309 Index 311 ...展开收缩
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.