开发工具:
文件大小: 625kb
下载次数: 0
上传时间: 2009-11-04
详细说明: Abstract This article investigates the of applicability of adding evolvability promoting mechanisms to a genetic algorithm to enhance its ability to handle perpetually novel dynamic environments, especially one that has stationary periods allowing the Genetic Al gorithm (GA) to converge on a temporary global optimum.We utilize both biological and evolutionary computation (EC) definitions of evolvability to create two measures: one based on the improvements in fitness; the other based on the amount of genotypic change. These two evolvability measures are used alongside fitness to modify how selection proceeds in the GA. We call this modified GA the Estimation of Evolvability Genetic Algorithm (EEGA). When tested against a regular GA (with random immigrants), the EEGA is able to track the global optimum more closely than the GA during the dynamic period. Unlike most GA extensions, the EEGA works effectively at a lower level of diversity than does the GA, showing that it is the quality of the diverse members in the population and not just the quantity that helps the GA evolve. ...展开收缩
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.