文件名称:
Data Mining-Practical Machine Learning Tools and Techniques-4ed-2017
开发工具:
文件大小: 4mb
下载次数: 0
上传时间: 2017-06-03
详细说明: Deep learning .................................................. 417 10.1 Deep Feedforward Networks ...................................................420 The MNIST Evaluation ........................................................... 421 Losses and Regularizat ion ....................................................... 422 Deep Layered Network Architecture ...................................... 423 Activation Functions................................................................ 424 Backpropagation Revisited...................................................... 426 Computation Graphs and Complex Network Structures ........ 429 Checking Backpropagation Implementations ......................... 430 10.2 Training and Evaluating Deep Networks ................................431 Early Stopping ......................................................................... 431 Validation, Cross-Validation, and Hyperparameter Tuning ... 432 Mini-Batch-Based Stochastic Gradient Descent ..................... 433 Pseudocode for Mini-Batch Based Stochastic Gradient Descent.................................................................................434 Learning Rates and Schedules................................................. 434 Regularization With Priors on Parameters.............................. 435 Dropout .................................................................................... 436 Batch Normalization................................................................ 436 Parameter Initialization............................................................ 436 Unsupervised Pretraining......................................................... 437 Data Augmentation and Synthetic Transformations............... 437 10.3 Convolutional Neural Networks ..............................................437 The ImageNet Evaluation and Very Deep Convolutional Networks ..............................................................................438 From Image Filtering to Learnable Convolutional Layers..... 439 Convolutional Layers and Gradients....................................... 443 Pooling and Subsampling Layers and Gradients .................... 444 Implementation ........................................................................ 445 10.4 Autoencoders............................................................................445 Pretraining Deep Autoencoders With RBMs.......................... 448 Denoising Autoencoders and Layerwise Training.................. 448 Combining Reconstructive and Discriminative Learning....... 449 xii Contents ...展开收缩
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.