您好,欢迎光临本网站![请登录][注册会员]  
文件名称: Deep learning Methods and Applications
  所属分类: 深度学习
  开发工具:
  文件大小: 3mb
  下载次数: 0
  上传时间: 2017-12-22
  提 供 者: wangd******
 详细说明: 微软大佬邓力的关于深度学习及应用的力作,主要是在语音方向, Table of Contents Chapter 1 Introduction .................................................................................................................... 5 1.1 Definitions and Background.......................................... ................................................... 5 1.2 Organization of This Book ............................................................................................... 8 Chapter 2 Some Historical Context of Deep Learning ................................................................ 11 Chapter 3 Three Classes of Deep Learning Networks ................................................................. 18 3.1 A Three-Way Categorization ......................................................................................... 18 3.2 Deep Networks for Unsupervised or Generative Learning ............................................ 21 3.3 Deep Networks for Supervised Learning ....................................................................... 24 3.4 Hybrid Deep Networks................................................................................................... 26 Chapter 4 Deep Autoencoders --- Unsupervised Learning ........................................................... 29 4.1 Introduction .................................................................................................................... 29 4.2 Use of Deep Autoencoders to Extract Speech Features ................................................. 30 4.3 Stacked Denoising Autoencoders................................................................................... 35 4.4 Transforming Autoencoders ........................................................................................... 35 Chapter 5 Pre-Trained Deep Neural Networks --- A Hybrid ...................................................... 37 5.1 Restricted Boltzmann Machines..................................................................................... 37 5.2 Unsupervised Layer-wise Pretraining ............................................................................ 40 5.3 Interfacing DNNs with HMMs ...................................................................................... 42 Chapter 6 Deep Stacking Networks and Variants --- Supervised Learning ................................ 44 6.1 Introduction .................................................................................................................... 44 6.2 A Basic Architecture of the Deep Stacking Network .................................................... 45 6.3 A Method for Learning the DSN Weights ..................................................................... 46 6.4 The Tensor Deep Stacking Network .............................................................................. 48 6.5 The Kernelized Deep Stacking Network ........................................................................ 50 Chapter 7 Selected Applications in Speech and Audio Processing ............................................. 53 7.1 Acoustic Modeling for Speech Recognition................................................................... 53 7.1.1 Back to primitive spectral features of speech................................................................. 54 7.1.2 The DNN-HMM architecture vs. use of DNN-derived features .................................... 56 7.1.3 Noise robustness by deep learning ................................................................................. 59 7.1.4 Output representations in the DNN ................................................................................ 60 7.1.5 Adaptation of the DNN-based speech recognizers ........................................................ 62 7.1.6 Better architectures and nonlinear units ......................................................................... 63 7.1.7 Better optimization and regularization …………………………………………………67 7.2 Speech Synthesis ............................................................................................................ 70 3 7.3 Audio and Music Processing .......................................................................................... 71 Chapter 8 Selected Applications in Language Modeling and Natural Language Processing ...... 73 8.1 Language Modeling........................................................................................................ 73 8.2 Natural Language Processing ......................................................................................... 77 Chapter 9 Selected Applications in Information Retrieval .......................................................... 84 9.1 A Brief Introduction to Information Retrieval ............................................................... 84 9.2 Semantic Hashing with Deep Autoencoders for Document Indexing and Retrieval ..... 85 9.3 Deep-Structured Semantic Modeling for Document Retrieval ...................................... 86 9.4 Use of Deep Stacking Networks for Information Retrieval ........................................... 91 Chapter 10 Selected Applications in Object Recognition and Computer Vision ........................ 92 10.1 Unsupervised or Generative Feature Learning............................................................... 92 10.2 Supervised Feature Learning and Classification ............................................................ 94 Chapter 11 Selected Applications in Multi-modal and Multi-task Learning ............................. 101 11.2 Multi-Modalities: Speech and Image ........................................................................... 104 11.3 Multi-Task Learning within the Speech, NLP or Image Domain ................................ 106 Chapter 12 Epilogues ................................................................................................................. 110 BIBLIOGRAPHY ....................................................................................................................... 114 ...展开收缩
(系统自动生成,下载前可以参看下载内容)

下载文件列表

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度
  • 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.
 相关搜索: Deep learning
 输入关键字,在本站1000多万海量源码库中尽情搜索: