开发工具:
文件大小: 689kb
下载次数: 0
上传时间: 2009-12-12
详细说明: 这是一篇来自science杂志的论文,非常经典!介绍了测地距离在流行降维中的应用。 Scientists working with large volumes of high-dimensional data, such as global climate patterns, stellar spectra, or human gene distributions, regularly confront the problem of dimensionality reduction: Þnding meaningful low-dimensional structures hidden in their high-dimensional observations. The human brain confronts the same problem in everyday perception, extracting from its high-dimensional sensory inputsÑ30,000 auditory nerve Þbers or 106 optic nerve ÞbersÑa manageably small numbe r of perceptually relevant features. Here we describe an approach to solving dimensionality reduction problems that uses easily measured local metric information to learn the underlying global geometry of a data set. Unlike classical techniques such as principal component analysis (PCA) and multidimensional scaling (MDS), our approach is capable of discovering the nonlinear degrees of freedom that underlie complex natural observations, such as human handwriting or images of a face under different viewing conditions. In contrast to previous algorithms for nonlinear dimensionality reduction, ours efÞciently computes a globally optimal solution, and, for an important class of data manifolds, is guaranteed to converge asymptotically to the true structure. ...展开收缩
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.