您好,欢迎光临本网站![请登录][注册会员]  
文件名称: 矩阵学习资源
  所属分类: 教育
  开发工具:
  文件大小: 3mb
  下载次数: 0
  上传时间: 2018-03-15
  提 供 者: weixin_********
 详细说明: Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii Part One — Matrices 1 Basic properties of vectors and matrices 3 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 Matrices: addition and multiplication . . . . . . . . . . . . . . . 4 4 The transpose of a matrix . . . . . . . . . . . . . . . . . . . . . 6 5 Square matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 6 Linea r forms and quadratic forms . . . . . . . . . . . . . . . . . 7 7 The rank of a matrix . . . . . . . . . . . . . . . . . . . . . . . . 8 8 The inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 9 The determinant . . . . . . . . . . . . . . . . . . . . . . . . . . 10 10 The trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 11 Partitioned matrices . . . . . . . . . . . . . . . . . . . . . . . . 11 12 Complex matrices . . . . . . . . . . . . . . . . . . . . . . . . . 13 13 Eigenvalues and eigenvectors . . . . . . . . . . . . . . . . . . . 14 14 Schur’s decomposition theorem . . . . . . . . . . . . . . . . . . 17 15 The Jordan decomposition . . . . . . . . . . . . . . . . . . . . . 18 16 The singular-value decomposition . . . . . . . . . . . . . . . . . 19 17 Further results concerning eigenvalues . . . . . . . . . . . . . . 20 18 Positive (semi)de�nite matrices . . . . . . . . . . . . . . . . . . 23 19 Three further results for positive de�nite matrices . . . . . . . 25 20 A useful result . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Miscellaneous exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2 Kronecker products, the vec operator and the Moore-Penrose inverse 31 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2 The Kronecker product . . . . . . . . . . . . . . . . . . . . . . 31 3 Eigenvalues of a Kronecker product . . . . . . . . . . . . . . . . 33 4 The vec operator . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5 The Moore-Penrose (MP) inverse . . . . . . . . . . . . . . . . . 36 6 Existence and uniqueness of the MP inverse . . . . . . . . . . . 37 v vi Contents 7 Some properties of the MP inverse . . . . . . . . . . . . . . . . 38 8 Further properties . . . . . . . . . . . . . . . . . . . . . . . . . 39 9 The solution of linear equation systems . . . . . . . . . . . . . 41 Miscellaneous exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3 Miscellaneous matrix results 47 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2 The adjoint matrix . . . . . . . . . . . . . . . . . . . . . . . . . 47 3 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . 49 4 Bordered determinants . . . . . . . . . . . . . . . . . . . . . . . 51 5 The matrix equation AX = 0 . . . . . . . . . . . . . . . . . . . 51 6 The Hadamard product . . . . . . . . . . . . . . . . . . . . . . 53 7 The commutation matrix K mn . . . . . . . . . . . . . . . . . . 54 8 The duplication matrix D n . . . . . . . . . . . . . . . . . . . . 56 9 Relationship between D n+1 and D n , I . . . . . . . . . . . . . . 58 10 Relationship between D n+1 and D n , II . . . . . . . . . . . . . . 60 11 Conditions for a quadratic form to be positive (negative) sub- ject to linear constraints . . . . . . . . . . . . . . . . . . . . . . 61 12 Necessary and su�cient conditions for r(A : B) = r(A) + r(B) 64 13 The bordered Gramian matrix . . . . . . . . . . . . . . . . . . 66 14 The equations X 1 A + X 2 B ′ = G 1 ,X 1 B = G 2 . . . . . . . . . . 68 Miscellaneous exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Part Two — Di�erentials: the theory 4 Mathematical preliminaries 75 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 2 Interior points and accumulation points . . . . . . . . . . . . . 75 3 Open and closed sets . . . . . . . . . . . . . . . . . . . . . . . . 76 4 The Bolzano-Weierstrass theorem . . . . . . . . . . . . . . . . . 79 5 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6 The limit of a function . . . . . . . . . . . . . . . . . . . . . . . 81 7 Continuous functions and compactness . . . . . . . . . . . . . . 82 8 Convex sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 9 Convex and concave functions . . . . . . . . . . . . . . . . . . . 85 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5 Di�erentials and di�erentiability 89 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 2 Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 3 Di�erentiability and linear approximation . . . . . . . . . . . . 91 4 The di�erential of a vector function . . . . . . . . . . . . . . . . 93 5 Uniqueness of the di�erential . . . . . . . . . . . . . . . . . . . 95 6 Continuity of di�erentiable functions . . . . . . . . . . . . . . . 96 7 Partial derivatives . . . . . . . . . . . . . . . . . . . . . . . . . 97 Contents vii 8 The �rst identi�cation theorem . . . . . . . . . . . . . . . . . . 98 9 Existence of the di�erential, I . . . . . . . . . . . . . . . . . . . 99 10 Existence of the di�erential, II . . . . . . . . . . . . . . . . . . 101 11 Continuous di�erentiability . . . . . . . . . . . . . . . . . . . . 103 12 The chain rule . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 13 Cauchy invariance . . . . . . . . . . . . . . . . . . . . . . . . . 105 14 The mean-value theorem for real-valued functions . . . . . . . . 106 15 Matrix functions . . . . . . . . . . . . . . . . . . . . . . . . . . 107 16 Some remarks on notation . . . . . . . . . . . . . . . . . . . . . 109 Miscellaneous exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 6 The second di�erential 113 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 2 Second-order partial derivatives . . . . . . . . . . . . . . . . . . 113 3 The Hessian matrix . . . . . . . . . . . . . . . . . . . . . . . . . 114 4 Twice di�erentiability and second-order approximation, I . . . 115 5 De�nition of twice di�erentiability . . . . . . . . . . . . . . . . 116 6 The second di�erential . . . . . . . . . . . . . . . . . . . . . . . 118 7 (Column) symmetry of the Hessian matrix . . . . . . . . . . . . 120 8 The second identi�cation theorem . . . . . . . . . . . . . . . . 122 9 Twice di�erentiability and second-order approximation, II . . . 123 10 Chain rule for Hessian matrices . . . . . . . . . . . . . . . . . . 125 11 The analogue for second di�erentials . . . . . . . . . . . . . . . 126 12 Taylor’s theorem for real-valued functions . . . . . . . . . . . . 128 13 Higher-order di�erentials . . . . . . . . . . . . . . . . . . . . . . 129 14 Matrix functions . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 7 Static optimization 133 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 2 Unconstrained optimization . . . . . . . . . . . . . . . . . . . . 134 3 The existence of absolute extrema . . . . . . . . . . . . . . . . 135 4 Necessary conditions for a local minimum . . . . . . . . . . . . 137 5 Su�cient conditions for a local minimum: �rst-derivative test . 138 6 Su�cient conditions for a local minimum: second-derivative test 140 7 Characterization of di�erentiable convex functions . . . . . . . 142 8 Characterization of twice di�erentiable convex functions . . . . 145 9 Su�cient conditions for an absolute minimum . . . . . . . . . . 147 10 Monotonic transformations . . . . . . . . . . . . . . . . . . . . 147 11 Optimization subject to constraints . . . . . . . . . . . . . . . . 148 12 Necessary conditions for a local minimum under constraints . . 149 13 Su�cient conditions for a local minimum under constraints . . 154 14 Su�cient conditions for an absolute minimum under constraints158 15 A note on constraints in matrix form . . . . . . . . . . . . . . . 159 16 Economic interpretation of Lagrange multipliers . . . . . . . . . 160 Appendix: the implicit function theorem . . . . . . . . . . . . . . . . 162 viii Contents Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 Part Three — Di�erentials: the practice 8 Some important di�erentials 167 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 2 Fundamental rules of di�erential calculus . . . . . . . . . . . . 167 3 The di�erential of a determinant . . . . . . . . . . . . . . . . . 169 4 The di�erential of an inverse . . . . . . . . . . . . . . . . . . . 171 5 Di�erential of the Moore-Penrose inverse . . . . . . . . . . . . . 172 6 The di�erential of the adjoint matrix . . . . . . . . . . . . . . . 175 7 On di�erentiating eigenvalues and eigenvectors . . . . . . . . . 177 8 The di�erential of eigenvalues and eigenvectors: symmetric case 179 9 The di�erential of eigenvalues and eigenvectors: complex case . 182 10 Two alternative expressions for dλ . . . . . . . . . . . . . . . . 185 11 Second di�erential of the eigenvalue function . . . . . . . . . . 188 12 Multiple eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . 189 Miscellaneous exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 189 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 9 First-order di�erentials and Jacobian matrices 193 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 2 Classi�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 3 Bad notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 4 Good notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 5 Identi�cation of Jacobian matrices . . . . . . . . . . . . . . . . 198 6 The �rst identi�cation table . . . . . . . . . . . . . . . . . . . . 198 7 Partitioning of the derivative . . . . . . . . . . . . . . . . . . . 199 8 Scalar functions of a vector . . . . . . . . . . . . . . . . . . . . 200 9 Scalar functions of a matrix, I: trace . . . . . . . . . . . . . . . 200 10 Scalar functions of a matrix, II: determinant . . . . . . . . . . . 202 11 Scalar functions of a matrix, III: eigenvalue . . . . . . . . . . . 204 12 Two examples of vector functions . . . . . . . . . . . . . . . . . 204 13 Matrix functions . . . . . . . . . . . . . . . . . . . . . . . . . . 205 14 Kronecker products . . . . . . . . . . . . . . . . . . . . . . . . . 208 15 Some other problems . . . . . . . . . . . . . . . . . . . . . . . . 210 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 10 Second-order di�erentials and Hessian matrices 213 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 2 The Hessian matrix of a matrix function . . . . . . . . . . . . . 213 3 Identi�cation of Hessian matrices . . . . . . . . . . . . . . . . . 214 4 The second identi�cation table . . . . . . . . . . . . . . . . . . 215 5 An explicit formula for the Hessian matrix . . . . . . . . . . . . 217 6 Scalar functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 7 Vector functions . . . . . . . . . . . . . . . . . . . . . . . . . . 219 8 Matrix functions, I . . . . . . . . . . . . . . . . . . . . . . . . . 220 Contents ix 9 Matrix functions, II . . . . . . . . . . . . . . . . . . . . . . . . 221 Part Four — Inequalities 11 Inequalities 225 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 2 The Cauchy-Schwarz inequality . . . . . . . . . . . . . . . . . . 225 3 Matrix analogues of the Cauchy-Schwarz inequality . . . . . . . 227 4 The theorem of the arithmetic and geometric means . . . . . . 228 5 The Rayleigh quotient . . . . . . . . . . . . . . . . . . . . . . . 230 6 Concavity of λ 1 , convexity of λ n . . . . . . . . . . . . . . . . . 231 7 Variational description of eigenvalues . . . . . . . . . . . . . . . 232 8 Fischer’s min-max theorem . . . . . . . . . . . . . . . . . . . . 233 9 Monotonicity of the eigenvalues . . . . . . . . . . . . . . . . . . 235 10 The Poincar´ e separation theorem . . . . . . . . . . . . . . . . . 236 11 Two corollaries of Poincar´ e’s theorem . . . . . . . . . . . . . . 237 12 Further consequences of the Poincar´ e theorem . . . . . . . . . . 238 13 Multiplicative version . . . . . . . . . . . . . . . . . . . . . . . 239 14 The maximum of a bilinear form . . . . . . . . . . . . . . . . . 241 15 Hadamard’s inequality . . . . . . . . . . . . . . . . . . . . . . . 242 16 An interlude: Karamata’s inequality . . . . . . . . . . . . . . . 243 17 Karamata’s inequality applied to eigenvalues . . . . . . . . . . 245 18 An inequality concerning positive semide�nite matrices . . . . . 245 19 A representation theorem for ( � a p i ) 1/p . . . . . . . . . . . . . 246 20 A representation theorem for (trA p ) 1/p . . . . . . . . . . . . . . 248 21 Hölder’s inequality . . . . . . . . . . . . . . . . . . . . . . . . . 249 22 Concavity of log|A| . . . . . . . . . . . . . . . . . . . . . . . . . 250 23 Minkowski’s inequality . . . . . . . . . . . . . . . . . . . . . . . 252 24 Quasilinear representation of |A| 1/n . . . . . . . . . . . . . . . . 254 25 Minkowski’s determinant theorem . . . . . . . . . . . . . . . . . 256 26 Weighted means of order p . . . . . . . . . . . . . . . . . . . . . 256 27 Schlömilch’s inequality . . . . . . . . . . . . . . . . . . . . . . . 259 28 Curvature properties of M p (x,a) . . . . . . . . . . . . . . . . . 260 29 Least squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 30 Generalized least squares . . . . . . . . . . . . . . . . . . . . . 263 31 Restricted least squares . . . . . . . . . . . . . . . . . . . . . . 263 32 Restricted least squares: matrix version . . . . . . . . . . . . . 265 Miscellaneous exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 266 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 Part Five — The linear model 12 Statistical preliminaries 275 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 2 The cumulative distribution function . . . . . . . . . . . . . . . 275 3 The joint density function . . . . . . . . . . . . . . . . . . . . . 276 4 Expectations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 x Contents 5 Variance and covariance . . . . . . . . . . . . . . . . . . . . . . 277 6 Independence of two random variables . . . . . . . . . . . . . . 279 7 Independence of n random variables . . . . . . . . . . . . . . . 281 8 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 9 The one-dimensional normal distribution . . . . . . . . . . . . . 281 10 The multivariate normal distribution . . . . . . . . . . . . . . . 282 11 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 Miscellaneous exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 285 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 13 The linear regression model 287 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 2 A�ne minimum-trace unbiased estimation . . . . . . . . . . . . 288 3 The Gauss-Markov theorem . . . . . . . . . . . . . . . . . . . . 289 4 The method of least squares . . . . . . . . . . . . . . . . . . . . 292 5 Aitken’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 293 6 Multicollinearity . . . . . . . . . . . . . . . . . . . . . . . . . . 295 7 Estimable functions . . . . . . . . . . . . . . . . . . . . . . . . 297 8 Linear constraints: the case M(R ′ ) ⊂ M(X ′ ) . . . . . . . . . . 299 9 Linear constraints: the general case . . . . . . . . . . . . . . . . 302 10 Linear constraints: the case M(R ′ ) ∩ M(X ′ ) = {0} . . . . . . . 305 11 A singular variance matrix: the case M(X) ⊂ M(V ) . . . . . . 306 12 A singular variance matrix: the case r(X ′ V + X) = r(X) . . . . 308 13 A singular variance matrix: the general case, I . . . . . . . . . . 309 14 Explicit and implicit linear constraints . . . . . . . . . . . . . . 310 15 The general linear model, I . . . . . . . . . . . . . . . . . . . . 313 16 A singular variance matrix: the general case, II . . . . . . . . . 314 17 The general linear model, II . . . . . . . . . . . . . . . . . . . . 317 18 Generalized least squares . . . . . . . . . . . . . . . . . . . . . 318 19 Restricted least squares . . . . . . . . . . . . . . . . . . . . . . 319 Miscellaneous exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 321 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 14 Further topics in the linear model 323 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323 2 Best quadratic unbiased estimation of σ 2 . . . . . . . . . . . . 323 3 The best quadratic and positive unbiased estimator of σ 2 . . . 324 4 The best quadratic unbiased estimator of σ 2 . . . . . . . . . . . 326 5 Best quadratic invariant estimation of σ 2 . . . . . . . . . . . . 329 6 The best quadratic and positive invariant estimator of σ 2 . . . 330 7 The best quadratic invariant estimator of σ 2 . . . . . . . . . . . 331 8 Best quadratic unbiased estimation: multivariate normal case . 332 9 Bounds for the bias of the least squares estimator of σ 2 , I . . . 335 10 Bounds for the bias of the least squares estimator of σ 2 , II . . . 336 11 The prediction of disturbances . . . . . . . . . . . . . . . . . . 338 12 Best linear unbiased predictors with scalar variance matrix . . 339 13 Best linear unbiased predictors with �xed variance matrix, I . . 341 Contents xi 14 Best linear unbiased predictors with �xed variance matrix, II . 344 15 Local sensitivity of the posterior mean . . . . . . . . . . . . . . 345 16 Local sensitivity of the posterior precision . . . . . . . . . . . . 347 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 348 Part Six — Applications to maximum likelihood estimation 15 Maximum likelihood estimation 351 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351 2 The method of maximum likelihood (ML) . . . . . . . . . . . . 351 3 ML estimation of the multivariate normal distribution . . . . . 352 4 Symmetry: implicit versus explicit treatment . . . . . . . . . . 354 5 The treatment of positive de�niteness . . . . . . . . . . . . . . 355 6 The information matrix . . . . . . . . . . . . . . . . . . . . . . 356 7 ML estimation of the multivariate normal distribution: distinct means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357 8 The multivariate linear regression model . . . . . . . . . . . . . 358 9 The errors-in-variables model . . . . . . . . . . . . . . . . . . . 361 10 The non-linear regression model with normal errors . . . . . . . 364 11 Special case: functional independence of mean- and variance parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365 12 Generalization of Theorem 6 . . . . . . . . . . . . . . . . . . . 366 Miscellaneous exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 368 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 370 16 Simultaneous equations 371 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371 2 The simultaneous equations model . . . . . . . . . . . . . . . . 371 3 The identi�cation problem . . . . . . . . . . . . . . . . . . . . . 373 4 Identi�cation with linear constraints on B and Γ only . . . . . 375 5 Identi�cation with linear constraints on B,Γ and Σ . . . . . . . 375 6 Non-linear constraints . . . . . . . . . . . . . . . . . . . . . . . 377 7 Full-information maximum likelihood (FIML): the information matrix (general case) . . . . . . . . . . . . . . . . . . . . . . . . 378 8 Full-information maximum likelihood (FIML): the asymptotic variance matrix (special case) . . . . . . . . . . . . . . . . . . . 380 9 Limited-information maximum likelihood (LIML): the �rst-order conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383 10 Limited-information maximum likelihood (LIML): the informa- tion matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386 11 Limited-information maximum likelihood (LIML): the asymp- totic variance matrix . . . . . . . . . . . . . . . . . . . . . . . . 388 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 393 xii Contents 17 Topics in psychometrics 395 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395 2 Population principal components . . . . . . . . . . . . . . . . . 396 3 Optimality of principal components . . . . . . . . . . . . . . . . 397 4 A related result . . . . . . . . . . . . . . . . . . . . . . . . . . . 398 5 Sample principal components . . . . . . . . . . . . . . . . . . . 399 6 Optimality of sample principal components . . . . . . . . . . . 401 7 Sample analogue of Theorem 3 . . . . . . . . . . . . . . . . . . 401 8 One-mode component analysis . . . . . . . . . . . . . . . . . . 401 9 One-mode component analysis and sample principal compo- nents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404 10 Two-mode component analysis . . . . . . . . . . . . . . . . . . 405 11 Multimode component analysis . . . . . . . . . . . . . . . . . . 406 12 Factor analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 410 13 A zigzag routine . . . . . . . . . . . . . . . . . . . . . . . . . . 413 14 A Newton-Raphson routine . . . . . . . . . . . . . . . . . . . . 415 15 Kaiser’s varimax method . . . . . . . . . . . . . . . . . . . . . . 418 16 Canonical correlations and variates in the population . . . . . . 421 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 423 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427 Index of symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439 Subject index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443 ...展开收缩
(系统自动生成,下载前可以参看下载内容)

下载文件列表

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度
  • 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.
 相关搜索: 矩阵经典外国
 输入关键字,在本站1000多万海量源码库中尽情搜索: