您好,欢迎光临本网站![请登录][注册会员]  
文件名称: deepHAR-master
  所属分类: 深度学习
  开发工具:
  文件大小: 25kb
  下载次数: 0
  上传时间: 2018-04-12
  提 供 者: qq_33******
 详细说明: x## deepHAR Code repository for experiments on deep architectures for HAR in ubicomp. Using this code you will be able to replicate some of the experiments described in our IJCAI 2016 paper: ``` @article{hammerla2016deep, title={Deep, convolutional, and recurrent models for human activity recognition using wearables}, author={Hammerla, Nils Y and Halloran, Shane and Ploetz, Thomas}, journal={IJCAI 2016}, year={2016} } ``` ## Disclaimer This code is still incomplete. At the moment only the bi-directional RNN will work on the opportunity data-set. ## Installation ``` git clone https://github.com/torch/distro.git ~/torch --recursive cd ~/torch; bash install-deps; ./install.sh # after installation, we need some additional packages #HDF5 luarock sudo apt-get install libhdf5-serial-dev hdf5-tools git clone https://github.com/deepmind/torch-hdf5 cd torch-hdf5 luarocks make hdf5-0-0.rockspec LIBHDF5_LIBDIR="/usr/lib/x86_64-linux-gnu/" # json luarocks install json # RNN support luarocks install torch luarocks install nn luarocks install dpnn luarocks install torchx luarocks install rnn # we use python3 pip3 install h5py pip3 install simplejson pip3 install numpy ``` ## Usage First download and extract the Opportunity dataset. Then use the provided python script in the `data` directory to prepare the training/validation/test sets. ``` cd data python3 data_reader.py opportunity /path/to/OpportunityUCIDataset ``` This will generate two hdf5-files that are read by the lua scripts, `opportunity.h5` and `opportunity.h5.classes.json`. To train the bi-directional RNN that we have found to work best on this set run the following commands: ``` cd models/RNN th main_brnn.lua -data ../../data/opportunity.h5 -cpu \ -layerSize 179 -maxInNorm 2.283772707 \ -learningRate 0.02516758 -sequenceLength 81 \ -carryOverProb 0.915735543 -numLayers 1 \ -logdir EXP_brnn ``` This will train a model only using your CPUs, which will take a while (make sure you have some form of BLAS library installed). On my laptop this will take approx. 5 min per epoch, and it will likely not converge before epoch 60. If your environment is set up for gpu-based computation, try using `-gpu 1` instead of the `-cpu` flag for a significant speedup. ## Other models The python-based `data_reader.py` is new and substitutes for the original but unmaintainable Matlab-scripts used previously. So far it only supports `opportunity` and sample-based evaluation, which will be addressed shortly. ...展开收缩
(系统自动生成,下载前可以参看下载内容)

下载文件列表

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度
  • 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.
 相关搜索: deepHAR
 输入关键字,在本站1000多万海量源码库中尽情搜索: