您好,欢迎光临本网站![请登录][注册会员]  
文件名称: 自然语言处理encode—edcode讲解论文
  所属分类: 讲义
  开发工具:
  文件大小: 356kb
  下载次数: 0
  上传时间: 2018-05-31
  提 供 者: weixin_********
 详细说明: 过去半年以来,自然语言处理领域进化出了一件神器。此神器乃是深度神经网络的一种新模式,该模式分为:embed、encode、attend、predict四部分。本文将对这四个部分娓娓道来,并且剖析它在两个实例中的用法。 人们在谈论机器学习带来的提升时,往往只想到了机器在效率和准确率方面带给人们的提升,然而最重要的一点却是机器学习算法的通用性。如果你想写一段程序来识别社交媒体平台上的侮辱性帖子,就把问题泛化为“需要输入一段文本,预测出文本的类别ID”。这种分类与识别侮辱性帖子或是标记电子邮件类别之类的具体任务无关。如果两个问题的输入和输出类型都一致,那我们就应复用同一套模型的代码,两者的区别应该在于送入的训练数据不同,就像我们使用同一个游戏引擎玩不同的游戏。 笔者用spaCy和Keras实现了自然语言推理的可分解注意力模型。代码已经上传到github 假设你有一项强大的技术,可以预测实数稠密向量的类别标签。只要输入输出的格式相同,你就能用这项技术解决所有的问题。与此同时,你有另一项技术,可以用一个向量和一个矩阵预测出另一个向量。那么,现在你手里就握着三类问题的解决方案了,而不是两类。为什么是三类呢?因为如果第三类问题是通过矩阵和一个向量,得到一个类别 标签,显然你可以组合利用前两种技术来解决。大多数NLP问题可以退化成输入一条或多条文本的机器学习问题。如果我们能将这些文本转化为向量,我们就可以复用现有的深度学习框架。接下来就是具体的做法。 ...展开收缩
(系统自动生成,下载前可以参看下载内容)

下载文件列表

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度
  • 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.
 相关搜索: encode 自然语言处理 decode
 输入关键字,在本站1000多万海量源码库中尽情搜索: