开发工具:
文件大小: 263kb
下载次数: 0
上传时间: 2018-06-07
详细说明: Recentworkinunsupervisedfeaturelearninganddeeplearninghasshownthatbeingabletotrainlargemodelscandramaticallyimproveperformance. Inthispaper, we consider the problem of training a deep network with billions of parameters using tens of thousands of CPU cores. We have developed a software framework calledDistBelief thatcanutilizecomputingclusterswiththousandsofmachinesto train large models. Within this framework, we have developed two algorithms for large-scale distributed training: (i) Downpour SGD, an asynchronous stochastic grad ient descent procedure supporting a large number of model replicas, and (ii) Sandblaster, a framework that supports a variety of distributed batch optimization procedures, including a distributed implementation of L-BFGS. Downpour SGD andSandblasterL-BFGSbothincreasethescaleandspeedofdeepnetworktraining. Wehavesuccessfullyusedoursystemtotrainadeepnetwork30xlargerthan previously reported in the literature, and achieves state-of-the-art performance on ImageNet, a visual object recognition task with 16 million images and 21k categories. We show that these same techniques dramatically accelerate the training of a more modestly- sized deep network for a commercial speech recognition service. Although we focus on and report performance of these methods as applied to training large neural networks, the underlying algorithms are applicable to any gradient-based machine learning algorithm. ...展开收缩
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.