文件名称:
SVD and application 奇异值分解及其应用
开发工具:
文件大小: 744kb
下载次数: 0
上传时间: 2018-07-05
详细说明: The singular value decomposition (SVD) is not only a classical theory in matrix computation and analysis, but also is a powerful tool in ma- chine learning and modern data analysis. In this tutorial we first study the basic notion of SVD and then show the central role of SVD in ma- trices. Using majorization theory, we consider variational principles of singular values and eigenvalues. Built on SVD and a theory of sym- metric gauge functions, we discuss unitarily invariant norms, which are then used to formulate general results for matrix low rank approxima- tion. We study the subdifferentials of unitarily invariant norms. These results would be potentially useful in many machine learning problems such as matrix completion and matrix data classification. Finally, we discuss matrix low rank approximation and its recent developments such as randomized SVD, approximate matrix multiplication, CUR decomposition, and Nyström approximation. Randomized algorithms are important approaches to large scale SVD as well as fast matrix computations. ...展开收缩
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.