开发工具:
文件大小: 238kb
下载次数: 0
上传时间: 2018-07-11
详细说明: 基于统计学习理论的支持向量机(SVM)方法在样本空间或特征空间构造最优分类超平面解决了分类器的构造问题,但其本质是二分类的,且核函数中的参数难以确定,计算复杂性高.构造性学习算法根据训练样本构造性地设计分类网络,运行效率高,便于处理多分类问题,但存在所得的分界面零乱、测试计算量大的缺点.该文将SVM中的核函数法与构造性学习的覆盖算法相融合,给出一种新的核覆盖算法.新算法克服了以上两种模型的缺点,具有运算速度快、精度高、鲁棒性强的优点.其次,文中给出风险误差上界与覆盖个数的关系.最后给出实验模拟,模拟结果证明了新方法的优越性.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.